A265009 a(1)=3; for n>1, if n is odd a(n) = spf(Product_{k=1..n-1}(a(k))+1) else a(n) = spf(Product_{k=1..n-1}(a(k))-1), where spf is "smallest prime factor".
3, 2, 7, 41, 1723, 5, 14835031, 220078129935929, 241, 23, 79, 101, 23291, 11, 223, 122386298896281959929015788890561251765109069, 38803, 17, 8209, 59, 199, 3340389589, 11527, 13, 47939, 1163, 599, 27198087874669514440553, 181936481, 31, 383, 9623, 739, 33287, 1061, 6493520653, 587, 709, 6548057, 1823, 361789, 20183
Offset: 1
Keywords
Programs
-
Mathematica
a[1] = 3; a[n_] := a[n] = FactorInteger[ Product[a[k], {k, n - 1}] + If[OddQ@ n, 1, -1]][[1, 1]]; Array[a, {16}] (* Michael De Vlieger, Nov 30 2015 *)
-
PARI
spf(n)=my(f=factor(n)[1, 1]); f first(m)=my(v=vector(m)); v[1]=3; for(i=2, m,;v[i]=spf((-1)^(i+1)+prod(j=1, i-1, v[j]))); v
Extensions
a(20)-a(42) from Hans Havermann, Dec 06 2015