A265019 Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into distinct parts with largest part k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
1, 1, 2, 3, 3, 5, 8, 16, 4, 7, 12, 40, 34, 50, 125, 5, 9, 16, 55, 73, 132, 281, 351, 307, 432, 1296, 6, 11, 20, 70, 96, 212, 469, 642, 1020, 1361, 3294, 3305, 3910, 3506, 4802, 16807, 7, 13, 24, 85, 119, 267, 644, 959, 1567, 2686, 5570, 7109, 11890, 13234
Offset: 0
Examples
Triangle T(n,k) begins: 00 : 1; 01 : 1; 02 : 2; 03 : 3, 3; 04 : 5, 4; 05 : 8, 7, 5; 06 : 16, 12, 9, 6; 07 : 40, 16, 11, 7; 08 : 34, 55, 20, 13, 8; 09 : 50, 73, 70, 24, 15, 9; 10 : 125, 132, 96, 85, 28, 17, 10; 11 : 281, 212, 119, 100, 32, 19, 11; 12 : 351, 469, 267, 142, 115, 36, 21, 12;
Links
- Alois P. Heinz, Columns k = 0..22, flattened
- R. Stanley, Parking Functions, 2011.
Crossrefs
Programs
-
Maple
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): g:= (n, i, l)-> `if`(i*(i+1)/2
n, 0, g(n-i, i-1, [i, l[]])))): b:= proc(n) option remember; g(n$2, []) end: T:= k-> seq(coeff(b(n), x, k), n=k..k*(k+1)/2): seq(T(k), k=0..8); -
Mathematica
p[l_] := With[{n = Length[l]}, n!*Det[Table[t = j-i+1; If[t<0, 0, l[[i]]^t/t!], {i, 1, n}, {j, 1, n}]]]; g[n_, i_, l_] := g[n, i, l] = If[i*(i+1)/2
n, 0, g[n-i, i-1, Join[{i}, l]]]]]; b[n_] := b[n] = g[n, n, {}]; T[0] = {1}; T[k_] := Table[Coefficient[b[n], x, k], {n, k, k*(k+1)/2}]; Table[T[k], {k, 0, 8}] // Flatten (* Jean-François Alcover, Feb 11 2017, translated from Maple *)