A265023 Second order complementary Bell numbers.
1, -1, 2, -4, 9, -22, 54, -139, 372, -948, 2607, -7388, 16058, -58957, 174854, 210448, 4345025, -2008714, -165872030, -1756557123, -6144936528, 60244093040, 1164910003567, 8228177887688, -10562519450714, -967088274083133, -11322641425582454, -37483806372774364
Offset: 0
Keywords
Programs
-
Mathematica
nmax = 27; A = Exp[x] + O[x]^(nmax - 1); B = Exp[1 - Integrate[A, x]]/E; c = Exp[1 - Integrate[B, x]]/E; CoefficientList[c, x] Range[0, nmax]! (* Jean-François Alcover, Jul 12 2019, from PARI *)
-
PARI
\\ For n>28 precision has to be adapted as needed! A = exp('x + O('x^33) ); B = exp(1 - intformal(A) )/exp(1); C = exp(1 - intformal(B) )/exp(1); round(Vec(serlaplace(C)))
-
Sage
# uses[bell_transform from A264428] def A265023_list(len): uno = [1]*len complementary_bell_numbers = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, uno))) for n in range(len)] complementary_bell_numbers2 = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, complementary_bell_numbers))) for n in range(len)] return complementary_bell_numbers2 print(A265023_list(28))