A265042 a(n) = the unique number k such that T(p + n) == k mod p for all primes p, where T(n) = A000798(n) = number of topologies on n points.
2, 7, 51, 634, 12623
Offset: 0
Examples
From _Altug Alkan_, Dec 17 2015: (Start) A000798(p^k) == k+1 mod p for all primes p. If k=1, A000798(p^1) == 2 mod p, that is, A000798(p) == 2 mod p. So a(0) = 2. a(1) = 7 because A000798(p + 1) == 7 mod p for all primes p. (End)
Links
- M. Y. Kizmaz, On The Number Of Topologies On A Finite Set, arXiv preprint arXiv:1503.08359 [math.NT], 2015.
Formula
Extensions
a(0) = 2 prepended by Altug Alkan, Dec 17 2015
Comments