A265056 Partial sums of A234275.
1, 5, 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, 725, 837, 957, 1085, 1221, 1365, 1517, 1677, 1845, 2021, 2205, 2397, 2597, 2805, 3021, 3245, 3477, 3717, 3965, 4221, 4485, 4757, 5037, 5325, 5621, 5925, 6237, 6557, 6885, 7221, 7565, 7917, 8277, 8645, 9021, 9405, 9797, 10197, 10605, 11021
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Accumulate[LinearRecurrence[{2,-1},{1,4,16,24},60]] (* or *) LinearRecurrence[{3,-3,1},{1,5,21,45},60] (* Harvey P. Dale, Sep 22 2024 *)
-
PARI
Vec((1+2*x+9*x^2-4*x^3)/(1-x)^3 + O(x^100)) \\ Colin Barker, Jan 01 2016
Formula
From Colin Barker, Jan 01 2016: (Start)
a(n) = 4*n^2+4*n-3 for n>0.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
G.f.: (1+2*x+9*x^2-4*x^3) / (1-x)^3.
(End)
Comments