A265061 Coordination sequence for (2,4,6) tiling of hyperbolic plane.
1, 3, 5, 8, 12, 17, 24, 33, 45, 61, 83, 114, 155, 210, 286, 389, 529, 720, 979, 1331, 1810, 2462, 3349, 4554, 6193, 8423, 11455, 15579, 21188, 28815, 39188, 53296, 72483, 98577, 134064, 182327, 247965, 337232, 458636, 623745, 848292, 1153677, 1569001, 2133841, 2902023, 3946750, 5367579, 7299906, 9927870, 13501901
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Index entries for linear recurrences with constant coefficients, signature (1, -1, 2, -1, 2, -1, 1, -1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Programs
-
Mathematica
CoefficientList[Series[(x + 1)^2 (x^2 + 1) (x^4 + x^2 + 1)/(x^8 - x^7 + x^6 - 2 x^5 + x^4 - 2 x^3 + x^2 - x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
-
PARI
Vec((x+1)^2*(x^2+1)*(x^4+x^2+1)/(x^8-x^7+x^6-2*x^5+x^4-2*x^3+x^2-x+1) + O(x^100)) \\ Altug Alkan, Dec 29 2015
Formula
G.f.: (x+1)^2*(x^2+1)*(x^4+x^2+1)/(x^8-x^7+x^6-2*x^5+x^4-2*x^3+x^2-x+1).