A265078 Partial sums of A072154.
1, 4, 9, 16, 25, 37, 52, 69, 88, 109, 133, 160, 189, 220, 253, 289, 328, 369, 412, 457, 505, 556, 609, 664, 721, 781, 844, 909, 976, 1045, 1117, 1192, 1269, 1348, 1429, 1513, 1600, 1689, 1780, 1873, 1969, 2068, 2169, 2272, 2377, 2485, 2596, 2709, 2824, 2941, 3061, 3184, 3309, 3436, 3565, 3697
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
Crossrefs
Cf. A072154.
Programs
-
Magma
I:=[1,4,9,16,25,37,52]; [n le 7 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-5)-2*Self(n-6)+Self(n-7): n in [1..60]]; // Vincenzo Librandi, Jan 01 2016
-
Mathematica
LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 4, 9, 16, 25, 37, 52}, 60] (* Vincenzo Librandi, Jan 01 2016 *)
-
PARI
Vec((1+x)^2*(1-x+x^2)*(1+x+x^2)/((1-x)^3*(1+x+x^2+x^3+x^4)) + O(x^70)) \\ Colin Barker, Jan 01 2016
Formula
G.f.: (1+x)^2*(1-x+x^2)*(1+x+x^2) / ((1-x)^3*(1+x+x^2+x^3+x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7). - Vincenzo Librandi, Jan 01 2016