cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265112 a(n) = A023360(A000040(n)): number of compositions of prime(n) into prime parts.

Original entry on oeis.org

1, 1, 3, 6, 20, 46, 232, 501, 2352, 24442, 53243, 550863, 2616338, 5701553, 27077005, 280237217, 2900328380, 6320545915, 65414893802, 310664269401, 677015556295, 7006815193063, 33276323565116, 344395408399372, 7767597342090622, 36889382062795742
Offset: 1

Views

Author

Bob Selcoe, Dec 01 2015

Keywords

Examples

			prime(4) = 7; a(4) = A023360(7) = 6 because there are 6 compositions of 7 into prime parts {2,3,5,7}: {7}, {5+2}, {3+2+2}, {2+5}, {2+3+2} and {2+2+3}.
		

Crossrefs

Cf. A000040 (prime numbers), A023360.

Programs

  • Maple
    N:= 1000: # to get a(1) to a(A000720(N))
    Primes:= select(isprime, [2,seq(i,i=3..N,2)]):
    M:= nops(Primes);
    F:= proc(x)
    option remember;
    local k;
    add(procname(x-Primes[k]),k=1..numtheory:-pi(x));
    end proc:
    F(0):= 1:
    seq(F(Primes[n]),n=1..M); # Robert Israel, Dec 02 2015
  • Mathematica
    Needs["Combinatorica`"]; Table[Length@ Flatten[Permutations[#, {Length@ #}] & /@ Select[Combinatorica`Partitions@ Prime@ n, AllTrue[#, PrimeQ] &], 1], {n, 14}] (* Version 10, slow, or *)
    lim = 101; t = Rest@ CoefficientList[Series[1/(1 - Sum[x^Prime[i], {i, 1, PrimePi@ lim}]), {x, 0, lim}], x]; t[[#]] &@ Prime@ Range@ PrimePi@ lim
    (* Michael De Vlieger, Dec 01 2015, after David W. Wilson at A023360 *)