A265120 Irregular array read by rows: Row n gives the number of elements in the multiplicative group mod n, (Z/nZ, *), that have order d for each divisor d of the exponent of the group.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 3, 4, 1, 3, 4, 1, 1, 2, 4, 8, 1, 1, 2, 2, 1, 1, 2, 2, 6, 6, 1, 3, 4, 1, 3, 2, 6, 1, 1, 4, 4, 1, 1, 10, 10, 1, 7, 1, 1, 2, 4, 4, 8
Offset: 2
Examples
{1} {1, 1} {1, 1} {1, 1, 2} {1, 1} {1, 1, 2, 2} {1, 3} {1, 1, 2, 2} {1, 1, 2} {1, 1, 4, 4} {1, 3} {1, 1, 2, 2, 2, 4} {1, 1, 2, 2} {1, 3, 4} {1, 3, 4} {1, 1, 2, 4, 8} {1, 1, 2, 2} {1, 1, 2, 2, 6, 6} {1, 3, 4} {1, 3, 2, 6} {1, 1, 4, 4} {1, 1, 10, 10} {1, 7}, {1, 1, 2, 4, 4, 8} The row for n=21 reads: 1,3,2,6 because the multiplicative group mod 21, (Z/21*Z,*) is isomorphic to C_6 X C_2. The exponent of this group is 6. This group contains one element of order 1, three elements of order 2, two elements of order 3, and six elements of order 6.
Programs
-
Mathematica
f[{p_, e_}] := {FactorInteger[p - 1][[All, 1]]^ FactorInteger[p - 1][[All, 2]], FactorInteger[p^(e - 1)][[All, 1]]^ FactorInteger[p^(e - 1)][[All, 2]]}; fun[lst_] := Module[{int, num, res}, int = Sort /@ GatherBy[Join @@ (FactorInteger /@ lst), First]; num = Times @@ Power @@@ (Last@# & /@ int); res = Flatten[Map[Power @@ # &, Most /@ int, {2}]]; {num, res}] rec[lt_] := First@NestWhile[{Append[#[[1]], fun[#[[2]]][[1]]], fun[#[[2]]][[2]]} &, {{}, lt}, Length[#[[2]]] > 0 &]; t[list_] := Table[Count[Map[PermutationOrder, GroupElements[AbelianGroup[list]]], d], {d, Divisors[First[list]]}]; Map[t, Table[ If[! IntegerQ[n/8], DeleteCases[rec[Flatten[Map[f, FactorInteger[n]]]], 1], DeleteCases[ rec[Join[{2, 2^(FactorInteger[n][[1, 2]] - 2)}, Flatten[Map[f, Drop[FactorInteger[n], 1]]]]], 1]], {n, 2, 25}] /. {} -> {1}]
Comments