A344122 Triangle T(n,k) read by rows in which n-th row gives all tree-able degree sequences S of n nodes encoded as Product_{k in S} prime(k); n >= 2, 1<= k <= A000041(n-2).
4, 12, 40, 36, 112, 120, 108, 352, 336, 400, 360, 324, 832, 1056, 1120, 1008, 1200, 1080, 972, 2176, 2496, 3520, 3136, 3168, 3360, 4000, 3024, 3600, 3240, 2916, 4864, 6528, 8320, 9856, 7488, 10560, 9408, 11200, 9504, 10080, 12000, 9072, 10800, 9720, 8748, 11776, 14592, 21760
Offset: 2
Examples
Triangle T(n,k) begins: n/k 1 2 3 ... 2 4; 3 12; 4 40, 36; 5 112, 120, 108; 6 352, 336, 400, 360, 324; 7 832, 1056, 1120, 1008, 1200, 1080, 972; 8 2176, 2496, 3520, 3136, 3168, 3360, 4000, 3024, 3600, 3240, 2916; ... Row 5 is 112, 120, 108 because prime(1) = 2, prime(2) = 3, prime(3) = 5, and prime(4) = 7. The tree-able degree sequences of 5 nodes, related tree realization and encode are given below. [4, 1, 1, 1, 1] o 7*2*2*2*2 = 112. ( ) ( ) o o o o [3, 2, 1, 1, 1] o 5*3*2*2*2 = 120. / | \ o--o o o [2, 2, 2, 1, 1] o--o--o--o--o 3*3*3*2*2 = 108.
Links
- Washington Bomfim, Table of n, a(n) for n = 2..9297 (Rows n = 2..27, flattened)
- Samuel Stern, The Tree of Trees: on methods for finding all non-isomorphic tree-realizations of degree sequences, Honors Thesis, Wesleyan University, 2017.
- Index entries for sequences computed from indices in prime factorization
Programs
-
PARI
\\ Gives row n of triangle, n >= 2. Row(n)={my(j=1, V=vector(numbpart(n-2))); forpart(P=n-2, V[j] = prod(k = 1, #P, prime(P[k] + 1)); V[j] <<= (n-#P); j++ ); V };
Comments