A265018
Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into distinct parts with largest part k; triangle T(n,k), n>=0, floor(sqrt(2n)+1/2)<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 2, 3, 3, 5, 4, 8, 7, 5, 16, 12, 9, 6, 40, 16, 11, 7, 34, 55, 20, 13, 8, 50, 73, 70, 24, 15, 9, 125, 132, 96, 85, 28, 17, 10, 281, 212, 119, 100, 32, 19, 11, 351, 469, 267, 142, 115, 36, 21, 12, 307, 642, 644, 322, 165, 130, 40, 23, 13
Offset: 0
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 2;
03 : 3, 3;
04 : 5, 4;
05 : 8, 7, 5;
06 : 16, 12, 9, 6;
07 : 40, 16, 11, 7;
08 : 34, 55, 20, 13, 8;
09 : 50, 73, 70, 24, 15, 9;
10 : 125, 132, 96, 85, 28, 17, 10;
11 : 281, 212, 119, 100, 32, 19, 11;
12 : 351, 469, 267, 142, 115, 36, 21, 12;
-
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
-> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
g:= (n, i, l)-> `if`(i*(i+1)/2n, 0, g(n-i, i-1, [i, l[]])))):
T:= n->(f->seq(coeff(f, x, i), i=ldegree(f)..degree(f)))(g(n$2, [])):
seq(T(n), n=0..20);
A265019
Total sum T(n,k) of number of lambda-parking functions of partitions lambda of n into distinct parts with largest part k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
Original entry on oeis.org
1, 1, 2, 3, 3, 5, 8, 16, 4, 7, 12, 40, 34, 50, 125, 5, 9, 16, 55, 73, 132, 281, 351, 307, 432, 1296, 6, 11, 20, 70, 96, 212, 469, 642, 1020, 1361, 3294, 3305, 3910, 3506, 4802, 16807, 7, 13, 24, 85, 119, 267, 644, 959, 1567, 2686, 5570, 7109, 11890, 13234
Offset: 0
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 2;
03 : 3, 3;
04 : 5, 4;
05 : 8, 7, 5;
06 : 16, 12, 9, 6;
07 : 40, 16, 11, 7;
08 : 34, 55, 20, 13, 8;
09 : 50, 73, 70, 24, 15, 9;
10 : 125, 132, 96, 85, 28, 17, 10;
11 : 281, 212, 119, 100, 32, 19, 11;
12 : 351, 469, 267, 142, 115, 36, 21, 12;
-
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
-> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
g:= (n, i, l)-> `if`(i*(i+1)/2n, 0, g(n-i, i-1, [i, l[]])))):
b:= proc(n) option remember; g(n$2, []) end:
T:= k-> seq(coeff(b(n), x, k), n=k..k*(k+1)/2):
seq(T(k), k=0..8);
-
p[l_] := With[{n = Length[l]}, n!*Det[Table[t = j-i+1; If[t<0, 0, l[[i]]^t/t!], {i, 1, n}, {j, 1, n}]]]; g[n_, i_, l_] := g[n, i, l] = If[i*(i+1)/2n, 0, g[n-i, i-1, Join[{i}, l]]]]]; b[n_] := b[n] = g[n, n, {}]; T[0] = {1}; T[k_] := Table[Coefficient[b[n], x, k], {n, k, k*(k+1)/2}]; Table[T[k], {k, 0, 8}] // Flatten (* Jean-François Alcover, Feb 11 2017, translated from Maple *)
Showing 1-2 of 2 results.