A265145
Number of lambda-parking functions of the unique strict partition lambda with parts i_1
1, 1, 2, 3, 3, 5, 4, 16, 8, 7, 5, 25, 6, 9, 12, 125, 7, 34, 8, 34, 16, 11, 9, 189, 15, 13, 50, 43, 10, 49, 11, 1296, 20, 15, 21, 243, 12, 17, 24, 253, 13, 64, 14, 52, 74, 19, 15, 1921, 24, 58, 28, 61, 16, 307, 27, 317, 32, 21, 17, 343, 18, 23, 98, 16807, 33
Offset: 1
Keywords
Examples
n = 10 = 2*5 = prime(1)*prime(3) encodes strict partition [1,4] having seven lambda-parking functions: [1,1], [1,2], [2,1], [1,3], [3,1], [1,4], [4,1], thus a(10) = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Richard P. Stanley, Parking Functions, 2011.
Programs
-
Maple
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): a:= n-> p((l-> [seq(l[j]+j-1, j=1..nops(l))])(sort([seq( numtheory[pi](i[1])$i[2], i=ifactors(n)[2])]))): seq(a(n), n=1..100);
-
Mathematica
p[l_] := Function [n, n! Det[Table[Function[t, If[t<0, 0, l[[i]]^t/t!]][j-i+1], {i, n}, {j, n}]]][Length[l]]; a[n_] := If[n==1, 1, p[Function[l, Flatten[Table[l[[j]]+j-1, {j, 1, Length[l]}]]][Sort[Flatten[Table[Table[PrimePi[ i[[1]]], {i[[2]]}], {i, FactorInteger[n]}]]]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Aug 21 2021, after Alois P. Heinz *)
Comments