A265163 Array of basis permutations, seen as a triangle read by rows: Row k (k >= 0) gives the values of b(n, k) = number of permutations of size n (2 <= n <= 2(k+1)) in the permutation basis B(k) (see Comments for further details).
1, 0, 2, 1, 0, 0, 6, 8, 1, 0, 0, 0, 24, 58, 18, 1, 0, 0, 0, 0, 120, 444, 244, 32, 1, 0, 0, 0, 0, 0, 720, 3708, 3104, 700, 50, 1, 0, 0, 0, 0, 0, 0, 5040, 33984, 39708, 13400, 1610, 72, 1, 0, 0, 0, 0, 0, 0, 0, 40320, 341136, 525240, 244708, 43320, 3206, 98, 1
Offset: 0
Examples
The number b(n, k) of basis permutations of length n where 2<=n<=11. k\n | 2 3 4 5 6 7 8 9 10 11 | #B_k 0 | 1 | 1 1 | 0 2 1 | 3 2 | 0 0 6 8 1 | 15 3 | 0 0 0 24 58 18 1 | 101 4 | 0 0 0 0 120 444 244 32 1 | 841 5 | 0 0 0 0 0 720 3708 3104 700 50 | 8232 6 | 0 0 0 0 0 0 5040 33984 39708 13400 | 78732 ----+--------------------------------------------------+------ Sum | 1 2 7 32 179 1182 8993 77440 744425 7901410 | ----+--------------------------------------------------+------
Links
- Cyril Banderier, Jean-Luc Baril, Céline Moreira Dos Santos, Right jumps in permutations, Permutation Patterns 2015.
Comments