cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265165 a(n) = sum of the n-th column of the array A265163(n,k). See Comments for more details.

Original entry on oeis.org

1, 0, 1, 2, 7, 32, 179, 1182, 8993, 77440, 744425, 7901410, 91774375, 1157782560, 15764338315, 230416499390, 3598316747905, 59792454064640, 1053360827319185, 19610513077334850, 384703418451703175, 7931544941793536800, 171459202078545968675, 3877969156687438765150
Offset: 0

Views

Author

Cyril Banderier, Dec 07 2015; revised Feb 06 2017

Keywords

Comments

A right-jump in a permutation consists of taking an element and moving it somewhere to its right.
The set P(k) of permutations reachable from the identity after at most k right-jumps is a permutation-pattern avoiding set: it coincides with the set of permutation avoiding a set of patterns.
We define B(k) to be the smallest such set of "forbidden patterns" (the permutation pattern community calls such a set a "basis" for P(k), and its elements can be referred to as "right-jump basis permutations").
The number b(n,k) of permutations of size n in B(k) is given by the array A265163.
The row sums give the sequence A265164 (i.e. this counts the permutations of any size in the basis B(k)).
The column sums give the present sequence (i.e. this counts the permutations of size n in any B(k)).

Examples

			G.f. = x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 179*x^6 + 1182*x^7 + 8993*x^8 + ...
The basis permutations of size 2 are 21 thus a(2)=1.
The basis permutations of size 3 are 312 and 321 thus a(3)=2.
The basis permutations of size 4 are 2143, 4123, 4132, 4213, 4231, 4312, 4321, thus a(4)=7.
		

Crossrefs

Programs

  • Maple
    gfun[rectoproc]({(n^2+3*n+1)*a(n)+(-2*n-4)*a(n+1)+a(n+2), a(0)=0, a(1)=0, a(2)=1}, a(n), remember);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-2, j-2)*(j-1)!, j=2..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 03 2023
  • Mathematica
    a[ n_] := If[ n < 1, 0, With[ {w = (1 + Sqrt[5])/2}, n! SeriesCoefficient[ w (1 - x)^(1 - w) - (1 - w) (1 - x)^w, {x, 0, n}]/Sqrt[5] // Simplify]]; (* Michael Somos, Jan 27 2017 *)
    RecurrenceTable[{a[n+2] == 2 n*a[n+1] - (n^2 - n - 1)*a[n], a[1] == 0, a[2] == 1}, a, {n, 1, 25}] (* Vaclav Kotesovec, Jan 20 2019 *)
  • PARI
    {a(n) = my(A); if( n<3, n==2, A = vector(n); A[2] = 1; for(k = 1, n-2, A[k + 2] = 2*k*A[k + 1] - (k^2 - k - 1)*A[k]); A[n])}; /* Michael Somos, Jan 27 2017 */
    
  • PARI
    {a(n) = my(w); if( n<1, 0, w = quadgen(5); n! * polcoeff( imag( w * (1 - x + x * O(x^n))^(1 - w) ), n))}; /* Michael Somos, Jan 27 2017 */

Formula

a(n+2) = 2n*a(n+1) - (n^2-n-1)*a(n) if n>0.
E.g.f.: -1 + (w * (1 - x)^(1 - w) - (1 - w) * (1 - x)^w) / sqrt(5) where w = (1 + sqrt(5))/2. - Michael Somos, Jan 27 2017
E.g.f. A(x) satisfies 0 == 1 + A(x) - (1 - x)^2 * A''(x). - Michael Somos, Jan 27 2017
0 = a(n)*(+4*a(n+1) + 2*a(n+2) - 6*a(n+3) + a(n+4)) + a(n+1)*(+4*a(n+1) + 6*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) if n>0. - Michael Somos, Jan 27 2017
a(n) ~ n! * (1 + 1/sqrt(5)) / (2 * Gamma((sqrt(5)-1)/2) * n^((3-sqrt(5))/2)). - Vaclav Kotesovec, Jan 20 2019
a(n) = (-1)^(n+1) * Sum_{i=1..n+1} A008275(n+1,i) * A001519(i-1). - Max Alekseyev, Dec 05 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 03 2023

A265164 Sum of the n-th row of the array A265163(n, k).

Original entry on oeis.org

1, 3, 15, 101, 841, 8283, 93815, 1198029, 16997041, 264864419, 4492081151, 82299283669, 1618674299769, 33997164987019, 759059595497511, 17945237236457533, 447676430154815137, 11748882878147100691, 323494584038834863087, 9322205037165367256837
Offset: 0

Views

Author

Cyril Banderier, Dec 07 2015; revised Feb 06 2017

Keywords

Comments

A right-jump in a permutation consists of taking an element and moving it somewhere to its right.
The set P(k) of permutations reachable from the identity after at most k right-jumps is a permutation-pattern avoiding set: it coincides with the set of permutation avoiding a set of patterns.
We define B(k) to be the smallest such set of "forbidden patterns" (the permutation pattern community calls such a set a "basis" for P(k), and its elements can be referred to as "right-jump basis permutations").
The number b(n,k) of permutations of size n in B(k) is given by the array A265163.
The row sums give the present sequence (i.e. this counts the permutations of any size in the basis B(k)).
The column sums give the sequence A265165 (i.e. this counts the permutations of size n in any B(k)).

Examples

			G.f. = 1 + 3*x + 15*x^2 + 101*x^3 + 841*x^4 + 8283*x^5 + 93815*x^6 + 1198029*x^7 + ...
The basis permutations for B(1) are 312, 321, and 2143, thus a(1)=3.
The basis permutations for B(2) are 4123, 4132, 4213, 4231, 4312, 4321, 21534, 21543, 31254, 32154, 31524, 31542, 32514, 32541, and 214365, thus a(2)=15.
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Module[ {A, s, F}, If[ n < 0, 0, A = 1 - x + O[x]^(2 n + 3); s = Sqrt[1 + 4 y + O[y]^(n + 2)]; F = y ((1 - 1/s) A^((1 + s)/2) + (1 + 1/s) A^((1 - s)/2))/2; Sum[ SeriesCoefficient[ SeriesCoefficient[ F, {x, 0, n + k}] (n + k)!, {y, 0, k}], {k, 2, 2 + n}]]]; (* Michael Somos, Jan 27 2017 *)
  • PARI
    {a(n) = my(A, s, F); if( n<0, 0, A = 1 - x + x * O(x^(2*n+2)); s = sqrt(1 + 4*y + y * O(y^(n+1))); F = y * ((1 - 1/s) * A^((1 + s)/2) + (1 + 1/s) * A^((1 - s)/2)) / 2; sum(k=2, 2+n, polcoeff( polcoeff( F, n+k) * (n+k)!, k)))}; /* Michael Somos, Jan 27 2017 */

A306699 Periods of A265165(k) mod n.

Original entry on oeis.org

2, 12, 8, 1, 12, 84, 8, 36, 2, 1, 24, 104, 84, 12, 16, 544, 36, 1, 8, 84, 2, 1012, 24, 1, 104, 108, 168, 1, 12, 1, 32, 12, 544, 84, 72, 2664, 2, 312, 8, 1, 84, 3612, 8, 36, 1012, 4324, 48, 588, 2, 1632, 104, 5512, 108, 1, 168, 12, 2, 1, 24, 1, 2, 252, 64, 104, 12, 2948, 544, 3036, 84, 1, 72, 10512, 2664
Offset: 2

Views

Author

Cyril Banderier, Mar 05 2019

Keywords

Comments

Let b(k) be the sequence A265165(k).
a(n) = period({b(k) mod n}) = smallest p > 0 such that b(k+p) = b(k) mod n (for all large enough k).
The sequences b(k) and a(n) were introduced in the Banderier-Baril-Moreira article, they have many noteworthy arithmetical properties (proven in the Banderier-Luca article).

Examples

			A265165(k) mod 15 = (10,5,10,10,0,10,5,10,5,5,0,5)... and this pattern of length 12 repeats, therefore a(15) = 12.
		

Crossrefs

Formula

The Banderier-Luca article proves the following properties:
a(n) = 1 iff n is a product of primes in 0,1,4 mod 5.
a(n) = 2 iff n/2 is a product of primes in 0,1,4 mod 5.
If a(n) is not 1, then it is an even number.
For any prime p, a(p) | 2 p (p-1).
For any prime p not in 0,1,4 mod 5, (and p^r <> 4), a(p^r) = p^r a(p).
a(n) is an "lcm-multiplicative" sequence: a(n1*n2) = lcm(a(n1), a(n2)) (for n1,n2 coprime), this implies that if n = p1^e1 ... pk^ek (factorization in distinct primes) then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
Showing 1-3 of 3 results.