A265164 Sum of the n-th row of the array A265163(n, k).
1, 3, 15, 101, 841, 8283, 93815, 1198029, 16997041, 264864419, 4492081151, 82299283669, 1618674299769, 33997164987019, 759059595497511, 17945237236457533, 447676430154815137, 11748882878147100691, 323494584038834863087, 9322205037165367256837
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 15*x^2 + 101*x^3 + 841*x^4 + 8283*x^5 + 93815*x^6 + 1198029*x^7 + ... The basis permutations for B(1) are 312, 321, and 2143, thus a(1)=3. The basis permutations for B(2) are 4123, 4132, 4213, 4231, 4312, 4321, 21534, 21543, 31254, 32154, 31524, 31542, 32514, 32541, and 214365, thus a(2)=15.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- Cyril Banderier, Jean-Luc Baril, Céline Moreira Dos Santos, Right jumps in permutations, Permutation Patterns 2015.
Programs
-
Mathematica
a[ n_] := Module[ {A, s, F}, If[ n < 0, 0, A = 1 - x + O[x]^(2 n + 3); s = Sqrt[1 + 4 y + O[y]^(n + 2)]; F = y ((1 - 1/s) A^((1 + s)/2) + (1 + 1/s) A^((1 - s)/2))/2; Sum[ SeriesCoefficient[ SeriesCoefficient[ F, {x, 0, n + k}] (n + k)!, {y, 0, k}], {k, 2, 2 + n}]]]; (* Michael Somos, Jan 27 2017 *)
-
PARI
{a(n) = my(A, s, F); if( n<0, 0, A = 1 - x + x * O(x^(2*n+2)); s = sqrt(1 + 4*y + y * O(y^(n+1))); F = y * ((1 - 1/s) * A^((1 + s)/2) + (1 + 1/s) * A^((1 - s)/2)) / 2; sum(k=2, 2+n, polcoeff( polcoeff( F, n+k) * (n+k)!, k)))}; /* Michael Somos, Jan 27 2017 */
Comments