cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265378 Numbers n such that n!3 + 3^9 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

4, 8, 10, 11, 14, 17, 20, 22, 29, 32, 44, 56, 61, 173, 202, 211, 215, 241, 388, 410, 416, 569, 583, 680, 823, 964, 1271, 1732, 2309, 2335, 2404, 2765, 3019, 3047, 4670, 5209, 6320, 6817, 7531, 9923, 11243, 14912, 17969, 21193, 28940
Offset: 1

Views

Author

Robert Price, Dec 07 2015

Keywords

Comments

Corresponding primes are: 19687, 19763, 19963, 20563, 32003, 229123, 4208483, 24364003, 72642189283, ...
a(46) > 50000.
Terms > 61 correspond to probable primes.

Examples

			11!3 + 3^9 = 11*8*5*2 + 19683 = 20563 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] + 3^9] &]
  • PARI
    tf(n) = prod(i=0, (n-1)\3, n-3*i);
    for(n=1, 1e4, if(ispseudoprime(tf(n) + 3^9), print1(n , ", "))) \\ Altug Alkan, Dec 07 2015

A267382 Numbers n such that n!3 - 3^7 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

13, 14, 16, 19, 22, 23, 26, 38, 64, 104, 137, 203, 296, 346, 347, 379, 481, 568, 899, 1162, 1603, 2614, 5698, 5846, 9253, 9565, 9848, 10406, 16051, 18377, 23110, 26026, 26120, 28994
Offset: 1

Views

Author

Robert Price, Jan 13 2016

Keywords

Comments

Corresponding primes are: 1453, 10133, 56053, 1104373, 24342133, 2504900213, 3091650738173813, ... .
a(35) > 50000.
Terms > 26 correspond to probable primes.

Examples

			13!3 - 3^7 = 13*10*7*4 - 2187 = 1453 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    Select[Range[13, 50000], PrimeQ[MultiFactorial[#, 3] - 3^7] &]
    Select[Range[12,6000],PrimeQ[Times@@Range[#,1,-3]-2187]&] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Aug 14 2024 *)

A288883 Primes of the form k!3 + 3^7, where k!3 is the triple factorial number (A007661).

Original entry on oeis.org

2267, 2467, 3067, 5827, 60427, 1108747, 4190987, 24346507, 664565853954187, 3091650738178187, 262134882788466690187, 571241722682644258978777268224002187, 1189733928480144370053771930898033195089920002187, 17994728558292550488813850298696914425610240002187
Offset: 1

Views

Author

Robert Price, Jun 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 3] + 3^7, {i, 0, 100}], PrimeQ[#]&]

Formula

a(n) = 2187 + A007661(A265200(n)). - Elmo R. Oliveira, Apr 14 2025
Showing 1-3 of 3 results.