cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265227 Nonnegative m for which k*floor(m^2/9) = floor(k*m^2/9), with 2 < k < 9.

Original entry on oeis.org

0, 1, 3, 6, 8, 9, 10, 12, 15, 17, 18, 19, 21, 24, 26, 27, 28, 30, 33, 35, 36, 37, 39, 42, 44, 45, 46, 48, 51, 53, 54, 55, 57, 60, 62, 63, 64, 66, 69, 71, 72, 73, 75, 78, 80, 81, 82, 84, 87, 89, 90, 91, 93, 96, 98, 99, 100, 102, 105, 107, 108, 109, 111, 114
Offset: 1

Views

Author

Bruno Berselli, Dec 06 2015

Keywords

Comments

Also, nonnegative m congruent to 0, 1, 3, 6 or 8 (mod 9). The product of any two terms belongs to the sequence and so also a(n)^2, a(n)^3, a(n)^4, etc.
Integers x >= 0 satisfying k*floor(x^2/9) = floor(k*x^2/9) with k >= 0:
k = 0, 1: x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... (A001477);
k = 2: x = 0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 15, ... (A060464);
k = 3..8: x = 0, 1, 3, 6, 8, 9, 10, 12, 15, 17, 18, ... (this sequence);
k > 8: x = 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ... (A008585).
Primes in sequence: 3, 17, 19, 37, 53, 71, 73, 89, 107, 109, 127, ...

Crossrefs

Cf. similar sequences listed in A265188.

Programs

  • Magma
    [n: n in [0..120] | 3*Floor(n^2/9) eq Floor(3*n^2/9)]; /* or, by the definition: */ K:=[3..8]; [: k in K];
  • Mathematica
    Select[Range[0, 120], 3 Floor[#^2/9] == Floor[3 #^2/9] &]
    Select[Range[0, 120], MemberQ[{0, 1, 3, 6, 8}, Mod[#, 9]] &]
    LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 3, 6, 8, 9}, 70]
  • Sage
    [n for n in (0..120) if 3*floor(n^2/9) == floor(3*n^2/9)]
    

Formula

G.f.: x^2*(1 + 2*x + 3*x^2 + 2*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.