A265233 Number of 3 X n arrays containing n copies of 0..2 with no equal vertical neighbors and new values introduced sequentially from 0.
1, 1, 7, 56, 495, 4686, 46456, 475392, 4976271, 52977890, 571434402, 6228357312, 68468597544, 758063599632, 8443936740960, 94545206802816, 1063391499647631, 12007844534804202, 136068111377744686, 1546682224461979920, 17630279034262961010, 201470426310372260580
Offset: 0
Keywords
Examples
Some solutions for n=4 ..0..1..0..2....0..1..2..2....0..1..0..0....0..1..1..2....0..1..1..2 ..2..0..2..0....2..0..1..0....2..2..2..2....1..2..2..0....2..0..0..0 ..1..1..1..2....0..1..2..1....1..1..0..1....0..0..1..2....1..1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 0..106
Crossrefs
Cf. A265232.
Formula
Conjecture: n^2*a(n) +(-19*n^2+19*n-6)*a(n-1) +96*(n-1)^2*a(n-2) -144*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 08 2015
Conjecture: a(n) ~ 2^(2*n - 1) * 3^(n - 1/2) / (Pi*n). - Vaclav Kotesovec, Mar 08 2023
If conjectured recurrence is true then ogf = (hypergeom([1/3,2/3],[1],27*x*(4*x-1)^2)+5)/6. - Mark van Hoeij, Nov 28 2024
Extensions
a(0)=1 prepended by Alois P. Heinz, Nov 28 2024
Comments