cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265233 Number of 3 X n arrays containing n copies of 0..2 with no equal vertical neighbors and new values introduced sequentially from 0.

Original entry on oeis.org

1, 1, 7, 56, 495, 4686, 46456, 475392, 4976271, 52977890, 571434402, 6228357312, 68468597544, 758063599632, 8443936740960, 94545206802816, 1063391499647631, 12007844534804202, 136068111377744686, 1546682224461979920, 17630279034262961010, 201470426310372260580
Offset: 0

Views

Author

R. H. Hardin, Dec 06 2015

Keywords

Comments

Row 3 of A265232.

Examples

			Some solutions for n=4
..0..1..0..2....0..1..2..2....0..1..0..0....0..1..1..2....0..1..1..2
..2..0..2..0....2..0..1..0....2..2..2..2....1..2..2..0....2..0..0..0
..1..1..1..2....0..1..2..1....1..1..0..1....0..0..1..2....1..1..2..2
		

Crossrefs

Cf. A265232.

Formula

Conjecture: n^2*a(n) +(-19*n^2+19*n-6)*a(n-1) +96*(n-1)^2*a(n-2) -144*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 08 2015
Conjecture: a(n) ~ 2^(2*n - 1) * 3^(n - 1/2) / (Pi*n). - Vaclav Kotesovec, Mar 08 2023
If conjectured recurrence is true then ogf = (hypergeom([1/3,2/3],[1],27*x*(4*x-1)^2)+5)/6. - Mark van Hoeij, Nov 28 2024

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 28 2024