cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276422 Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of its odd singletons is k (0<=k<=n). A singleton in a partition is a part that occurs exactly once.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 0, 2, 0, 1, 8, 0, 0, 1, 1, 0, 1, 4, 4, 0, 4, 0, 2, 0, 1, 14, 0, 0, 2, 2, 1, 1, 0, 2, 9, 6, 0, 7, 0, 4, 0, 2, 0, 2, 24, 1, 0, 4, 3, 2, 2, 1, 3, 0, 2, 16, 10, 0, 12, 0, 8, 0, 4, 1, 3, 0, 2, 41, 1, 0, 7, 5, 4, 4, 2, 6, 1, 3, 0, 3, 28, 16, 0, 20, 0, 14, 0, 8, 2, 6, 1, 3, 0, 3
Offset: 0

Views

Author

Emeric Deutsch, Sep 14 2016

Keywords

Comments

T(n,0) = A265256(n).
T(n,n) = A000700(n).
Sum(k*T(n,k), k>=0) = A276423(n).
Sum(T(n,k), k>=0) = A000041(n).

Examples

			Row 4 is 4, 0, 0, 0, 1 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the odd singletons are 0, 0, 0, 4, 0, respectively.
Row 5 is 2, 2, 0, 2, 0, 1 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the odd singletons are 0, 0, 1, 3, 3, 1, 5, respectively.
Triangle starts:
1;
0,1;
2,0,0;
1,1,0,1;
4,0,0,0,1;
2,2,0,2,0,1.
		

Crossrefs

Programs

  • Maple
    g := Product(((1-x^(2*j-1))*(1+t^(2*j-1)*x^(2*j-1))+x^(4*j-2))/(1-x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 23)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, i), i = 0 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j=1 and i::odd, x^i, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Sep 14 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && OddQ[i], x^i, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 04 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product(((1-x^{2j-1})(1+t^{2j-1}x^{2j-1}) + x^{4j-2})/(1-x^j), j=1..infinity).

A265255 Triangle read by rows: T(n,k) is the number of partitions of n having k odd singletons (n, k >=0).

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 4, 0, 1, 2, 5, 8, 1, 2, 4, 11, 14, 3, 5, 9, 20, 0, 1, 24, 8, 10, 16, 37, 1, 2, 41, 15, 21, 28, 65, 3, 5, 66, 30, 39, 49, 108, 9, 10, 104, 57, 69, 0, 1, 80, 178, 19, 20, 163, 99, 120, 1, 2, 128, 286, 39, 37, 248, 170, 201, 3, 5, 203, 448, 73, 68, 372, 284, 327
Offset: 0

Views

Author

Emeric Deutsch, Jan 01 2016

Keywords

Comments

Sum of entries in row n is A000041(n).
T(n,0) = A265256(n).
Sum_{k>=0} k*T(n,k) = A265257(n).

Examples

			T(6,2) = 2 because each of the partitions [1,2,3], [1,5] of n = 6 has 2 odd singleton, while the other partitions, namely [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [2,4], [6], have 0, 0, 0, 0, 1, 0, 0, 0, 0  odd singletons.
Triangle starts:
1;
0, 1;
2;
1, 2;
4, 0, 1;
2, 5;
8, 1, 2.
		

Crossrefs

Programs

  • Maple
    g := mul(((1-x^(2*j-1))*(1+t*x^(2*j-1))+x^(4*j-2))/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, q), q = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; expand(
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
          `if`(j=1 and i::odd, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Jan 01 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && OddQ[i], x, 1], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 10 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1} ((1 -x^(2j-1))(1+tx^{2j-1}) + x^(4j-2))/ (1-x^j).
Showing 1-2 of 2 results.