A265261 Smallest n-Knödel number, i.e., smallest composite c > n such that each b < c coprime to c satisfies b^(c-n) == 1 (mod c).
561, 4, 9, 6, 25, 8, 15, 12, 21, 12, 15, 16, 33, 24, 21, 20, 65, 24, 51, 24, 45, 24, 33, 32, 69, 30, 39, 40, 65, 36, 87, 40, 45, 44, 51, 40, 85, 56, 57, 48, 65, 72, 91, 48, 63, 66, 69, 60, 141, 56, 63, 60, 65, 72, 75, 60, 63, 70, 87, 72, 133, 122, 93, 80, 165
Offset: 1
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..4000
- Wikipedia, Knödel number.
Programs
-
Mathematica
Table[SelectFirst[Range[n + 1, 10^3], Function[c, CompositeQ@ c && AllTrue[Range[1, c - 1] /. x_ /; ! CoprimeQ[x, c] -> Nothing, Mod[#^(c - n), c] == 1 &]]], {n, 65}] (* Michael De Vlieger, Apr 06 2016, Version 10 *)
-
PARI
a(n) = forcomposite(c=n+1, , my(i=0, j=0); for(b=1, c-1, if(gcd(b, c)==1, i++; if(Mod(b, c)^(c-n)==1, j++))); if(i==j, return(c)))