cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265266 G.f. A(x) satisfies: A(x) = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(2*n).

Original entry on oeis.org

1, 2, 5, 27, 143, 833, 5198, 33607, 223627, 1522249, 10546221, 74119591, 527150783, 3786896705, 27437431852, 200267244944, 1471209231873, 10869315344076, 80707738490984, 601977204069443, 4508156389422426, 33884634730883602, 255532279985062648, 1932864141175160374, 14660843479381675987, 111486308441258038306, 849773662058395948696, 6491244696415245552638, 49685280480631490670702, 381014689125058139363522, 2926949265189880054761750
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2016

Keywords

Comments

Compare to: Sum_{n=-oo..+oo} x^n * (c - x^n)^n = 0 for fixed |c| > 0.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 27*x^3 + 143*x^4 + 833*x^5 + 5198*x^6 + 33607*x^7 + 223627*x^8 + 1522249*x^9 + 10546221*x^10 + ...
Let A = g.f. A(x) where A(x) = P(x) + N(x) then
P(x) = 1 + x*(A - x)^2 + x^2*(A - x^2)^4 + x^3*(A - x^3)^6 + x^4*(A - x^4)^8 + x^5*(A - x^5)^10 + x^6*(A - x^6)^12 + x^7*(A - x^7)^14 + x^8*(A - x^8)^16 + ...
N(x) = x/(1-x*A)^2 + x^6/(1-x^2*A)^4 + x^15/(1-x^3*A)^6 + x^28/(1-x^4*A)^8 + x^45/(1-x^5*A)^10 + x^66/(1-x^6*A)^12 + x^91/(1-x^7*A)^14 + ...
Explicitly,
P(x) = 1 + x + 3*x^2 + 20*x^3 + 117*x^4 + 708*x^5 + 4535*x^6 + 29801*x^7 + 200369*x^8 + 1373999*x^9 + 9570641*x^10 + 67539460*x^11 + 481899317*x^12 + ...
N(x) = x + 2*x^2 + 7*x^3 + 26*x^4 + 125*x^5 + 663*x^6 + 3806*x^7 + 23258*x^8 + 148250*x^9 + 975580*x^10 + 6580131*x^11 + 45251466*x^12 + ...
		

Crossrefs

Cf. A260147.

Programs

  • PARI
    {a(n) = my(A=[1,1]); for(i=1,n, A=Vec( sum(n=-#A-1,#A+1, x^n*(Ser(A) - x^n)^(2*n) ) ) );A[n+1]}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    /* Quick print of terms 0..N (informal): */
    N = 40; A=[1]; for(i=1,N, A=Vec( sum(n=-#A-1,#A+1, x^n*(Ser(A) - x^n)^(2*n) ) ) );A

Formula

The g.f. A(x) = Sum_{n>=0} a(n)*x^n also satisfies:
(1) A(x) = Sum_{n=-oo..+oo} x^n * (A(x) + x^n)^(2*n).
(2) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - x^n*A(x))^(2*n).
(3) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + x^n*A(x))^(2*n).
(4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (A(x^2) - x^n)^n.
(5) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (A(x^2) + x^n)^n.
(6) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n*A(x^2))^n.
(7) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n*A(x^2))^n.
a(n) ~ c * d^n / n^(3/2), where d = 8.078575206447883305059904... and c = 0.294232997886629805825... - Vaclav Kotesovec, Sep 03 2017