A265288 Decimal expansion of Sum_{n >= 1} (phi - c(2*n-1)), where phi is the golden ratio (A001622), and c(n) is the n-th convergent to the continued fraction expansion of phi.
7, 5, 7, 2, 0, 4, 3, 7, 5, 0, 4, 6, 0, 0, 7, 3, 3, 8, 6, 4, 7, 8, 2, 5, 2, 6, 0, 6, 7, 3, 7, 7, 4, 8, 3, 0, 1, 0, 5, 8, 5, 2, 0, 1, 6, 1, 5, 6, 6, 7, 8, 4, 1, 9, 2, 9, 3, 2, 0, 1, 5, 5, 1, 1, 3, 4, 7, 1, 9, 0, 7, 3, 6, 6, 1, 7, 8, 3, 5, 7, 6, 6, 9, 7, 9, 5
Offset: 0
Examples
0.75720437504600733864782526067377483... The convergents to x are c(1) = 1, c(2) = 2, c(3) = 3/2, c(4) = 5/3, ..., so that A265288 = (x - 1) + (x - 3/2) + (x - 8/5) + ... ; A265289 = (2 - x) + (5/3 - x) + (13/8 - x ) + ... ; A265290 = (2 - 1) + (5/3 - 3/2) + (13/8 - 8/5) + ...
Programs
-
Maple
x := -(3 - sqrt(5))/2: evalf(sqrt(5)*add(x^(n*(n+1)/2)/(x^n - 1), n = 1..24), 100); # Peter Bala, Aug 21 2022
-
Mathematica
x = GoldenRatio; z = 600; c = Convergents[x, z]; s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200] s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200] N[s1 + s2, 200] RealDigits[s1, 10, 120][[1]] (* A265288 *) RealDigits[s2, 10, 120][[1]] (* A265289 *) RealDigits[s1 + s2, 10, 120][[1]] (* A265290 *)
Formula
Equals Sum_{k >= 1} 1/(phi^(2*k-1) * F(2*k-1)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020
From Peter Bala, Aug 19 2022: (Start)
The constant equals Sum_{k >= 1} (-1)^(k+1)/F(2*k). The constant also equals (3/5)*Sum_{k >= 1} (-1)^(k+1)/(F(2*k)*F(2*k+2)*F(2*k+4)) + 11/15.
A rapidly converging series for the constant is sqrt(5) * Sum_{k >= 1} x^(k*(k+1)/2)/ (x^k - 1) at x = phi - 2 = -(3 - sqrt(5))/2. (End)
Comments