A265289 Decimal expansion of Sum_{n>=1} (c(2*n) - phi), where phi is the golden ratio (A001622) and c = convergents to phi.
4, 3, 8, 7, 5, 1, 4, 1, 0, 9, 7, 1, 5, 0, 6, 2, 5, 7, 3, 5, 5, 6, 4, 9, 5, 3, 9, 3, 4, 7, 5, 2, 7, 1, 9, 0, 1, 6, 9, 6, 6, 4, 1, 9, 3, 4, 2, 5, 9, 2, 0, 0, 6, 7, 1, 9, 4, 1, 3, 7, 2, 8, 5, 1, 5, 0, 3, 7, 2, 1, 9, 5, 3, 9, 9, 5, 9, 3, 2, 4, 5, 5, 0, 7, 4, 5
Offset: 0
Examples
0.4387514109715062573556495393475271901...
Programs
-
Maple
x := (7 - 3*sqrt(5))/2: evalf(sqrt(5)*add(x^(n^2)*(1 + x^n)/(1 - x^n), n = 1..12), 100); # Peter Bala, Aug 21 2022
-
Mathematica
x = GoldenRatio; z = 600; c = Convergents[x, z]; s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200] s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200] N[s1 + s2, 200] RealDigits[s1, 10, 120][[1]] (* A265288 *) RealDigits[s2, 10, 120][[1]] (* A265289 *) RealDigits[s1 + s2, 10, 120][[1]] (* A265290 *)
Formula
Equals Sum_{k>=1} 1/(phi^(2*k) * F(2*k)), where F(k) is the k-th Fibonacci number (A000045). - Amiram Eldar, Oct 05 2020
Equals sqrt(5)*Sum_{k >= 1} x^(k^2)*(1 + x^k)/(1 - x^k), where x = (7 - 3*sqrt(5))/2. - Peter Bala, Aug 21 2022
Comments