A265290 Decimal expansion of Sum_{n>=1} |phi - c(n)|, where phi is the golden ratio (A001622) and c(n) are the convergents to phi.
1, 1, 9, 5, 9, 5, 5, 7, 8, 6, 0, 1, 7, 5, 1, 3, 5, 9, 6, 0, 0, 3, 4, 7, 4, 8, 0, 0, 0, 2, 1, 3, 0, 2, 0, 2, 0, 2, 7, 5, 5, 1, 6, 2, 0, 9, 5, 8, 2, 5, 9, 8, 4, 8, 6, 4, 8, 7, 3, 3, 8, 8, 3, 6, 2, 8, 5, 0, 9, 1, 2, 6, 9, 0, 6, 1, 3, 7, 6, 8, 2, 2, 2, 0, 5, 4
Offset: 1
Examples
1.195955786017513596003474800021...
Programs
-
Maple
x := (3 - sqrt(5))/2: evalf(sqrt(5)*add(x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), n = 1..16), 100); # Peter Bala, Aug 21 2022
-
Mathematica
x = GoldenRatio; z = 600; c = Convergents[x, z]; s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200] s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200] N[s1 + s2, 200] RealDigits[s1, 10, 120][[1]] (* A265288 *) RealDigits[s2, 10, 120][[1]] (* A265289 *) RealDigits[s1 + s2, 10, 120][[1]] (* A265290, dev(x) *) d[x_] := If[IntegerQ[1000!*x], Total[Abs[x - Convergents[x]]], Total[Abs[x - Convergents[x, 30]]]] Plot[{d[x], 1.195}, {x, 0, 1}]
Formula
Equals Sum_{n>=1} 1/(F(2*n-1)*F(2*n)), where F(n) is the n-th Fibonacci number (A000045).
From Amiram Eldar, Oct 05 2020: (Start)
Equals Sum_{k>=1} 1/(phi^k * F(k)).
Equals sqrt(5) * Sum_{k>=1} 1/(phi^(2*k) - (-1)^k) = sqrt(5) * Sum_{k>=1} (-1)^(k+1)/(phi^(2*k) + (-1)^k).
Equals (A290565 + 1/phi)/2. (End)
A rapidly converging series for the constant is sqrt(5)*Sum_{k >= 1} x^(k^2)*(1 + x^(2*k))/(1 - x^(2*k)), where x = (3 - sqrt(5))/2. See A112329. - Peter Bala, Aug 21 2022
Comments