cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265293 Decimal expansion of Sum_{n >= 1} (c(2*n) - c(2*n-1)), where c(n) = the n-th convergent to x = sqrt(2).

Original entry on oeis.org

5, 1, 7, 1, 7, 4, 2, 2, 0, 2, 2, 0, 6, 7, 1, 8, 8, 6, 2, 1, 9, 9, 6, 4, 3, 5, 2, 3, 3, 8, 6, 6, 9, 2, 3, 6, 1, 0, 5, 5, 2, 1, 3, 5, 7, 3, 4, 9, 9, 7, 1, 0, 5, 3, 5, 4, 7, 1, 9, 1, 6, 6, 3, 7, 3, 7, 1, 8, 9, 8, 5, 8, 8, 2, 3, 3, 0, 3, 0, 8, 5, 2, 9, 6, 5, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 06 2015

Keywords

Examples

			sum = 0.51717422022067188621996435233866923610552...
		

Crossrefs

Programs

  • Maple
    x := 3 - 2*sqrt(2):
    evalf(2*sqrt(2)*add(x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), n = 1..12), 100); # Peter Bala, Aug 20 2022
  • Mathematica
    x = Sqrt[2]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265291 *)
    RealDigits[s2, 10, 120][[1]]  (* A265292 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265293 *)

Formula

From Peter Bala, Aug 20 2022: (Start)
Constant equals Sum_{n >= 1} 1/((1 + sqrt(2))^n*Pell(n)) = 2*sqrt(2)*Sum_{n >= 1} 1/( (3 + 2*sqrt(2))^n - (-1)^n ), where Pell(n) = A000129(n).
A more rapidly converging series for the constant is 2*sqrt(2)*Sum_{n >= 1} x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), where x = 3 - 2*sqrt(2). See A112329. (End)