A265326 n-th prime minus its binary reversal.
1, 0, 0, 0, -2, 2, 0, -6, -6, 6, 0, -4, 4, -10, -14, 10, 4, 14, -30, -42, 0, -42, -18, 12, 30, 18, -12, 0, 18, 42, 0, -62, -8, -70, -20, -82, -28, -34, -62, -8, -26, 8, -62, 62, 34, -28, 8, -28, 28, 62, 82, -8, 98, 28, 0, -186, -84, -210, -60
Offset: 1
Examples
n=5: prime(5) = 11_10 = 1011_2, reversing gives 1101_2 = 13_10, so a(5) = 11-13 = -2.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..23000, May 29 2016 [First 10000 terms from _Robert Israel_]
- Rémy Sigrist, Colored scatterplot of the first 82025 terms (corresponding to the prime numbers < 2^20) (where the color is function of A000040(n) mod 8)
- N. J. A. Sloane, Table of n, a(n) for n = 1..78498
- N. J. A. Sloane and Brady Haran, Amazing Graphs, Numberphile video (2019)
Programs
-
Maple
revdigs:= proc(n) local L, j; L:= convert(n,base,2); add(L[-j]*2^(j-1),j=1..nops(L)) end proc: map(t -> t - revdigs(t), select(isprime, [2,seq(i,i=3..1000,2)])); # Robert Israel, Dec 08 2015
-
Mathematica
Table[# - FromDigits[Reverse@ IntegerDigits[#, 2], 2] &@ Prime@ n, {n, 60}] (* Michael De Vlieger, Dec 09 2015 *)
-
PARI
a098957(n) = my(v=binary(prime(n)), s); forstep(i=#v, 1, -1, s+=s+v[i]); s a(n) = prime(n) - a098957(n); \\ Altug Alkan, Dec 07 2015
Comments