cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A265330 Zero-based row index to A265345; 2-adic valuation of bijective base-3 reversal of n: a(n) = A007814(A263273(n)).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Examples

			For n = 32, in base-3 "1012" [= A007089(32)], when we reverse it, we get "2101" [= A007089(64)], and 2-adic valuation of 64 [= "1000000" = A007088(64)] is 6, thus a(32) = 6.
		

Crossrefs

One less than A265331.
Cf. A265910 (corresponding other index).
Cf. also A265336, A265337, A265340.
Differs from A007814 for the first time at n=32, where a(32) = 6, while A007814(32) = 5.

Formula

a(n) = A007814(A263273(n)).
a(2n+1) = 0, a(2n) = 1 + a(A265352(n)).

A265336 Number of nonleading 0-bits in bijective base-3 reversal of n: a(n) = A080791(A263273(n)).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 1, 1, 3, 2, 2, 2, 2, 1, 2, 2, 4, 2, 3, 1, 3, 0, 1, 1, 3, 3, 2, 1, 2, 1, 1, 3, 6, 2, 2, 4, 4, 0, 2, 2, 4, 4, 5, 3, 4, 0, 4, 1, 4, 2, 4, 3, 3, 2, 2, 1, 3, 4, 3, 5, 2, 1, 4, 2, 5, 1, 3, 3, 5, 4, 3, 3, 5, 3, 1, 2, 3, 3, 3, 2, 5, 4, 4, 4, 4, 2, 2, 4, 6, 3, 3, 2, 4, 1, 2, 3, 6, 5, 4, 3, 4, 3, 5, 0, 5, 2, 4, 2, 3, 3, 4, 2, 4, 5, 3, 4, 3, 2, 2, 2, 3, 2, 4, 4, 5, 3, 4, 2, 4
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Crossrefs

Formula

a(n) = A080791(A263273(n)).
a(0) = 0, a(2n) = 1 + a(A265339(n)), a(2n+1) = a(A265339(n)).
a(n) = A265340(n) - A265337(n).

A265337 Number of 1-bits in base-3 reversal of n: a(n) = A000120(A263273(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 2, 3, 3, 3, 1, 3, 2, 3, 2, 4, 3, 4, 2, 2, 3, 4, 3, 5, 4, 3, 1, 4, 4, 3, 2, 5, 4, 4, 2, 3, 2, 3, 3, 6, 2, 5, 2, 4, 3, 4, 3, 5, 4, 4, 3, 2, 3, 2, 4, 5, 3, 4, 1, 5, 3, 3, 2, 3, 3, 4, 2, 3, 5, 4, 3, 4, 4, 4, 2, 3, 3, 4, 3, 5, 6, 4, 2, 5, 4, 5, 4, 6, 5, 5, 2, 3, 4, 5, 3, 5, 3, 7, 3, 6, 4, 6, 4, 4, 4, 5, 3, 3, 5, 4, 5, 5, 5, 6, 4, 5, 4, 4, 3, 5, 4, 5, 4
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Crossrefs

Programs

Formula

a(n) = A000120(A263273(n)).
a(0) = 0, a(2n) = a(A265339(n)), a(2n+1) = 1 + a(A265339(n)).
a(n) = A265340(n) - A265336(n).

A265339 a(n) = A263273(A004526(A263273(n))).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 2, 4, 4, 7, 9, 6, 6, 19, 10, 8, 12, 9, 7, 10, 5, 5, 19, 12, 8, 13, 13, 22, 27, 21, 18, 64, 28, 23, 36, 18, 21, 55, 11, 20, 57, 57, 24, 58, 37, 25, 30, 24, 15, 73, 31, 26, 39, 27, 22, 28, 16, 11, 64, 30, 23, 31, 14, 16, 55, 15, 20, 46, 46, 17, 58, 36, 25, 37, 17, 14, 73, 39, 26, 40, 40
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

When permutation A263273 is viewed as a binary tree, a(n) gives the parent node of node containing n, for all n >= 1.
Each n occurs exactly twice in the sequence.

Crossrefs

Programs

Formula

a(n) = A263273(A004526(A263273(n))).
Showing 1-4 of 4 results.