A265384 Toothpick sequence starting at the vertex of y=3*abs(x).
1, 2, 3, 5, 7, 9, 11, 13, 17, 21, 23, 25, 27, 31, 35, 39, 43, 47, 55, 63, 65, 67, 69, 73, 77, 81, 85, 89, 97, 105, 109, 113, 117, 125, 133, 141, 149, 157, 173, 189, 191, 193, 195, 199, 203, 207, 211, 215, 223, 231, 235, 239, 243, 251, 259, 267, 275, 283, 299, 315, 319, 323, 327, 335, 343, 351, 359, 367, 383, 399, 407, 415, 423, 439, 455, 471, 487, 503, 535, 567
Offset: 1
Keywords
Examples
The pattern is the total number of toothpicks laid after n rounds. Following the rules above, the first round has 1 toothpick, the second and third rounds also have 1 toothpick, but the fourth and fifth round both have 2 toothpicks. Finding the total toothpicks placed in this pattern (1,1,1,2,2) gives 1,2,3,5,7. Subsequent rounds have this same pattern repeated from the emerging branches thus: (1,1,1,2,2) ---> 1,2,3,5,7 2*(1,1,1,2,2) ---> 9,11,13,17,21 2*((1,1,1,2,2),2*(1,1,1,2,2)) ---> 23,25,27,31,35,39,43,47,55,63 2*((1,1,1,2,2),2*(1,1,1,2,2),2*((1,1,1,2,2),2*(1,1,1,2,2))) ---> 65,67,69,73,77,81,85,89,97,105,109,113,117,125,133,141,149,157,173,189 Summation of 1*the sequence 1,1,1,2,2 (1)=1 1+(1)=2 2+(1)=3 3+(2)=5 5+(2)=7 Summation of 2*the sequence 1,1,1,2,2 7+2(1)=9 9+2(1)=11 11+2(1)=13 13+2(2)=17 17+2(2)=21 Summation of 3*the sequence 1,1,1,2,2 21+2(1)=23 23+2(1)=25 25+2(1)=27 27+2(2)=31 31+2(2)=35
Comments