Christopher J. Shore has authored 3 sequences.
A329267
a(n) is the absolute difference between n and its nearest palindromic neighbor.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2
Offset: 0
For 0 <= n <= 9, n is palindromic so a(n) = 0.
a(10) = 10-9 = 11-10 = 1 (10 is equidistant from its two nearest palindromes).
a(11) = 0 because 11 is palindromic.
For 12 <= n <= 16, a(n) = n-11 because 11 is the nearest palindromic number.
For 17 <= n <= 22, a(n) = 22-n because 22 is the nearest palindromic number.
.
n nearest palindrome difference
-- ------------------ ----------
1 1 1-1 = 0
2 2 2-2 = 0
3 3 3-3 = 0
4 4 4-4 = 0
5 5 5-5 = 0
6 6 6-6 = 0
7 7 7-7 = 0
8 8 8-8 = 0
9 9 9-9 = 0
10 9 or 11 10-9 = 11-10 = 1
11 11 11-11 = 0
12 11 12-11 = 1
13 11 13-11 = 2
14 11 14-11 = 3
15 11 15-11 = 4
16 11 16-11 = 5
17 22 22-17 = 5
18 22 22-18 = 4
19 22 22-19 = 3
20 22 22-20 = 2
21 22 22-21 = 1
22 22 22-22 = 0
23 22 23-22 = 1
-
palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse@ d]; a[n_] := Block[{k=0}, While[! palQ[n+k] && ! palQ[n-k], k++]; k]; Array[a, 121] (* Giovanni Resta, Nov 12 2019 *)
-
ispal(n) = my (d=digits(n)); d==Vecrev(d)
a(n) = for (k=0, oo, if (ispal(n-k) || ispal(n+k), return (k))) \\ Rémy Sigrist, Dec 03 2019
A272459
The total number of different isosceles trapezoids, excluding squares, that can be drawn on an n X n square grid where the corners of each individual trapezoid lie on a lattice point.
Original entry on oeis.org
0, 1, 7, 18, 40, 71, 119, 180, 264, 365, 495, 646, 832, 1043, 1295, 1576, 1904, 2265, 2679, 3130, 3640, 4191, 4807, 5468, 6200, 6981, 7839, 8750, 9744, 10795, 11935, 13136, 14432, 15793, 17255, 18786, 20424, 22135, 23959, 25860, 27880, 29981, 32207, 34518
Offset: 1
-
[(n*(-1-3*(-1)^n-12*n+10*n^2))/24 : n in [1..60]]; // Wesley Ivan Hurt, Sep 12 2016
-
A272459:=n->(n*(-1-3*(-1)^n-12*n+10*n^2))/24: seq(A272459(n), n=1..60); # Wesley Ivan Hurt, Sep 12 2016
-
CoefficientList[Series[x^2 (1 + 5 x + 3 x^2 + x^3)/((1 - x)^4 (1 + x)^2), {x, 0, 44}], x] (* Michael De Vlieger, May 08 2016 *)
-
concat(0, Vec(x^2*(1+5*x+3*x^2+x^3)/((1-x)^4*(1+x)^2) + O(x^50))) \\ Colin Barker, May 07 2016
A265384
Toothpick sequence starting at the vertex of y=3*abs(x).
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 11, 13, 17, 21, 23, 25, 27, 31, 35, 39, 43, 47, 55, 63, 65, 67, 69, 73, 77, 81, 85, 89, 97, 105, 109, 113, 117, 125, 133, 141, 149, 157, 173, 189, 191, 193, 195, 199, 203, 207, 211, 215, 223, 231, 235, 239, 243, 251, 259, 267, 275, 283, 299, 315, 319, 323, 327, 335, 343, 351, 359, 367, 383, 399, 407, 415, 423, 439, 455, 471, 487, 503, 535, 567
Offset: 1
The pattern is the total number of toothpicks laid after n rounds.
Following the rules above, the first round has 1 toothpick, the second and third rounds also have 1 toothpick, but the fourth and fifth round both have 2 toothpicks. Finding the total toothpicks placed in this pattern (1,1,1,2,2) gives 1,2,3,5,7. Subsequent rounds have this same pattern repeated from the emerging branches thus:
(1,1,1,2,2) ---> 1,2,3,5,7
2*(1,1,1,2,2) ---> 9,11,13,17,21
2*((1,1,1,2,2),2*(1,1,1,2,2)) ---> 23,25,27,31,35,39,43,47,55,63
2*((1,1,1,2,2),2*(1,1,1,2,2),2*((1,1,1,2,2),2*(1,1,1,2,2))) ---> 65,67,69,73,77,81,85,89,97,105,109,113,117,125,133,141,149,157,173,189
Summation of 1*the sequence 1,1,1,2,2
(1)=1
1+(1)=2
2+(1)=3
3+(2)=5
5+(2)=7
Summation of 2*the sequence 1,1,1,2,2
7+2(1)=9
9+2(1)=11
11+2(1)=13
13+2(2)=17
17+2(2)=21
Summation of 3*the sequence 1,1,1,2,2
21+2(1)=23
23+2(1)=25
25+2(1)=27
27+2(2)=31
31+2(2)=35
Comments