A265410 a(n) = one-based index to the nearest horizontally or vertically adjacent inner neighbor in square-grid spirals, and to the nearest diagonally adjacent inner neighbor when n is one of the corner cases A033638.
0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 10, 10, 10, 11, 12, 13, 13, 13, 14, 15, 16, 17, 17, 17, 18, 19, 20, 21, 21, 21, 22, 23, 24, 25, 26, 26, 26, 27, 28, 29, 30, 31, 31, 31, 32, 33, 34, 35, 36, 37, 37, 37, 38, 39, 40, 41, 42, 43, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 50, 51, 52, 53, 54, 55, 56, 57, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 65
Offset: 1
Keywords
Examples
We arrange natural numbers as a counterclockwise spiral into the square grid in the following manner (here A stands for 10, B for 11 and C for 12). The first square corresponds with n, and the second square with the value of a(n): 55433 543C 51113C 612B 61012B 789A 71122A 7789AA - For each n > 1, we look for the nearest horizontally or vertically adjacent neighbor of n towards the center that is not n-1, which will then be value of a(n) [e.g., it is 1 for 4, 6 and 8, while it is 2 for 9 and 11 and 3 for 12] unless n is in the corner (one of the terms of A033638), in which case the value is the nearest diagonally adjacent neighbor towards the center.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
- Antti Karttunen, R6RS-Scheme program for computing this sequence
Crossrefs
Formula
a(1) = 0; for 1 < n < 8, a(n) = 1 and for n >= 8: if either A240025(n-1) or A240025(n-2) is not zero [when n or n-1 is in A033638], then a(n) = a(n-1), otherwise, a(n) = 1 + a(n-1).
a(1) = 0; for 1 < n < 8, a(n) = 1 and for n >= 8: a(n) = a(n-1) + (1-A240025(n-1))*(1-A240025(n-2)). [The same formula in a more compact form.]
Other identities. For all n >= 0:
Comments