A265506 Number of pairs (p,q) of partitions of n into distinct parts such that p majorizes q in the dominance order.
1, 1, 1, 3, 3, 6, 10, 15, 21, 35, 54, 75, 115, 161, 238, 349, 486, 673, 972, 1323, 1840, 2562, 3478, 4711, 6407, 8624, 11533, 15502, 20574, 27194, 36030, 47320, 61833, 81139, 105286, 136845, 177369, 228563, 293787, 377803, 483090, 616546, 785925, 997987
Offset: 0
Keywords
Examples
a(3) = 3: (21,21), (3,21), (3,3). a(4) = 3: (31,31), (4,31), (4,4). a(5) = 6: (32,32), (41,32), (41,41), (5,32), (5,41), (5,5). a(6) = 10: (321,321), (42,321), (42,42), (51,321), (51,42), (51,51), (6,321), (6,42), (6,51), (6,6).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Wikipedia, Dominance Order
Programs
-
Maple
b:= proc(n, m, i, j, t) option remember; `if`(n
0, b(n, m, i, j-1, true), 0)+ b(n, m, i-1, j, false)+b(n-i, m-j, max(0, min(n-i, i-1)), max(0, min(m-j, j-1)), true)))) end: a:= n-> b(n$4, true): seq(a(n), n=0..40); -
Mathematica
b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n < m, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Max[0, Min[n-i, i-1]], Max[0, Min[m-j, j-1]], True]]]]; a[n_] := b[n, n, n, n, True]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)