cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265506 Number of pairs (p,q) of partitions of n into distinct parts such that p majorizes q in the dominance order.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 35, 54, 75, 115, 161, 238, 349, 486, 673, 972, 1323, 1840, 2562, 3478, 4711, 6407, 8624, 11533, 15502, 20574, 27194, 36030, 47320, 61833, 81139, 105286, 136845, 177369, 228563, 293787, 377803, 483090, 616546, 785925, 997987
Offset: 0

Views

Author

Alois P. Heinz, Dec 09 2015

Keywords

Examples

			a(3) = 3: (21,21), (3,21), (3,3).
a(4) = 3: (31,31), (4,31), (4,4).
a(5) = 6: (32,32), (41,32), (41,41), (5,32), (5,41), (5,5).
a(6) = 10: (321,321), (42,321), (42,42), (51,321), (51,42), (51,51), (6,321), (6,42), (6,51), (6,6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i, j, t) option remember; `if`(n0, b(n, m, i, j-1, true), 0)+
          b(n, m, i-1, j, false)+b(n-i, m-j, max(0, min(n-i, i-1)),
          max(0, min(m-j, j-1)), true))))
        end:
    a:= n-> b(n$4, true):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n < m, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Max[0, Min[n-i, i-1]], Max[0, Min[m-j, j-1]], True]]]]; a[n_] := b[n, n, n, n, True]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)