cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248476 Number of pairs (not necessarily successors) of partitions of n that are incomparable in dominance (natural, majorization) ordering.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 8, 30, 70, 170, 340, 770, 1424, 2810, 5166, 9542, 16614, 29596, 49952, 85610, 141604, 234622, 379218, 616008, 976134, 1549134, 2418768, 3771252, 5795300, 8903306, 13497384, 20438432, 30630108, 45789134, 67857566, 100346480, 147170162, 215341690
Offset: 1

Views

Author

Wouter Meeussen, Oct 07 2014

Keywords

Comments

a(n) is always even since each incomparable pair (p1,p2) has a distinct companion (p2,p1).

Crossrefs

Programs

  • Mathematica
    Table[Count[ Flatten[Outer[dominant , Partitions[n], Partitions[n], 1]], 0], {n, 24}] (* see A248475 for definition of 'dominant' *)

Formula

a(n) = p(n)^2 - A182988(n), where p(n) denotes the number of partitions of n, A000041(n).

A265506 Number of pairs (p,q) of partitions of n into distinct parts such that p majorizes q in the dominance order.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 35, 54, 75, 115, 161, 238, 349, 486, 673, 972, 1323, 1840, 2562, 3478, 4711, 6407, 8624, 11533, 15502, 20574, 27194, 36030, 47320, 61833, 81139, 105286, 136845, 177369, 228563, 293787, 377803, 483090, 616546, 785925, 997987
Offset: 0

Views

Author

Alois P. Heinz, Dec 09 2015

Keywords

Examples

			a(3) = 3: (21,21), (3,21), (3,3).
a(4) = 3: (31,31), (4,31), (4,4).
a(5) = 6: (32,32), (41,32), (41,41), (5,32), (5,41), (5,5).
a(6) = 10: (321,321), (42,321), (42,42), (51,321), (51,42), (51,51), (6,321), (6,42), (6,51), (6,6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, i, j, t) option remember; `if`(n0, b(n, m, i, j-1, true), 0)+
          b(n, m, i-1, j, false)+b(n-i, m-j, max(0, min(n-i, i-1)),
          max(0, min(m-j, j-1)), true))))
        end:
    a:= n-> b(n$4, true):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n < m, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Max[0, Min[n-i, i-1]], Max[0, Min[m-j, j-1]], True]]]]; a[n_] := b[n, n, n, n, True]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
Showing 1-2 of 2 results.