cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265559 Smallest base-2 palindrome m >= n, written in base 2.

Original entry on oeis.org

0, 1, 11, 11, 101, 101, 111, 111, 1001, 1001, 1111, 1111, 1111, 1111, 1111, 1111, 10001, 10001, 10101, 10101, 10101, 10101, 11011, 11011, 11011, 11011, 11011, 11011, 11111, 11111, 11111, 11111, 100001, 100001, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 101101, 110011
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 2015

Keywords

Crossrefs

Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.
See A206914 for the values of m written in base 10.

Programs

  • Maple
    ispal:= proc(n) global b; # test if n is base-b pallindrome
      local L, Ln, i;
      L:= convert(n, base, b);
      Ln:= nops(L);
    for i from 1 to floor(Ln/2) do
    if L[i] <> L[Ln+1-i] then return(false); fi;
    od:
    return(true);
    end proc;
    # find min pal >= n, write in base 10
    big10:=proc(n) global b;
    local t1,t2,i,m,sw1,L1;
    t1:=convert(n,base,b);
    L1:=nops(t1);
    for m from n to 10*n do
    if ispal(m) then return(m); fi;
                           od;
    lprint("no solution in big10 for n = ", n);
    end proc;
    # find min pal >= n, write in base 10
    bigb:=proc(n) global b;
    local t1,t2,i,m,mb,sw1,L1;
    t1:=convert(n,base,b);
    L1:=nops(t1);
    for m from n to 10*n do
    if ispal(m) then t2:=convert(m,base,b); mb:=add(t2[i]*10^(i-1), i=1..nops(t2)); return(mb); fi;
                           od;
    lprint("no solution in big10 for n = ", n);
    end proc;
    b:=2;
    [seq(big10(n),n=0..144)]; # A206914
    [seq(bigb(n),n=0..144)]; # A265559
  • Mathematica
    b2pal[n_]:=Module[{m=n},While[IntegerDigits[m,2]!=Reverse[IntegerDigits[m,2]],m++]; FromDigits[ IntegerDigits[m,2]]]; Array[b2pal,50,0] (* Harvey P. Dale, Feb 25 2024 *)