A265575 LCM-transform of Euler totient numbers (A000010).
1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 2, 1, 13, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 41, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..26003
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
- A. Nowicki, Strong divisibility and LCM-sequences, arXiv:1310.2416 [math.NT], 2013.
- A. Nowicki, Strong divisibility and LCM-sequences, Am. Math. Mnthly 122 (2015), 958-966.
Programs
-
Maple
LCMXfm:=proc(a) local L,i,n,g,b; L:=nops(a); g:=Array(1..L,0); b:=Array(1..L,0); b[1]:=a[1]; g[1]:=a[1]; for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od; lprint([seq(b[i],i=1..L)]); end; with(numtheory); t1:=[seq(phi(n),n=1..100)]; LCMXfm(t1);
-
Mathematica
LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]]; LCMXfm[Table[EulerPhi[n], {n, 1, 100}]] (* Jean-François Alcover, Dec 05 2017, from Maple *)
-
PARI
up_to = 10000; LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); }; v265575 = LCMtransform(vector(up_to,i,eulerphi(i))); A265575(n) = v265575[n]; \\ Antti Karttunen, Nov 09 2018