cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265575 LCM-transform of Euler totient numbers (A000010).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 2, 1, 13, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 41, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2016

Keywords

Crossrefs

Cf. A000010.
Other LCM-transforms are A061446, A265574, A265576, A265577, A265578.

Programs

  • Maple
    LCMXfm:=proc(a) local L,i,n,g,b;
    L:=nops(a);
    g:=Array(1..L,0); b:=Array(1..L,0);
    b[1]:=a[1]; g[1]:=a[1];
    for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od;
    lprint([seq(b[i],i=1..L)]);
    end;
    with(numtheory);
    t1:=[seq(phi(n),n=1..100)];
    LCMXfm(t1);
  • Mathematica
    LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]];
    LCMXfm[Table[EulerPhi[n], {n, 1, 100}]] (* Jean-François Alcover, Dec 05 2017, from Maple *)
  • PARI
    up_to = 10000;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    v265575 = LCMtransform(vector(up_to,i,eulerphi(i)));
    A265575(n) = v265575[n]; \\ Antti Karttunen, Nov 09 2018