A265578 LCM-transform of number of divisors function (A000005).
1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- A. Nowicki, Strong divisibility and LCM-sequences, arXiv:1310.2416 [math.NT], 2013.
- A. Nowicki, Strong divisibility and LCM-sequences, Am. Math. Mnthly 122 (2015), 958-966.
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
Maple
LCMXfm:=proc(a) local L,i,n,g,b; L:=nops(a); g:=Array(1..L,0); b:=Array(1..L,0); b[1]:=a[1]; g[1]:=a[1]; for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od; lprint([seq(b[i],i=1..L)]); end; with(numtheory); t1:=[seq(tau(n),n=1..100)]; LCMXfm(t1);
-
Mathematica
LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n-1], a[[n]]]; b[n] = g[n]/g[n-1], {n, 2, L}]; Array[b, L]]; LCMXfm[Table[DivisorSigma[0, n], {n, 1, 100}]] (* Jean-François Alcover, Dec 05 2017, from Maple *)
-
PARI
up_to = 16384; LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); }; v265578 = LCMtransform(vector(up_to,i,numdiv(i))); A265578(n) = v265578[n]; \\ Antti Karttunen, Nov 06 2018
Comments