A265581 Number of (unlabeled) loopless multigraphs such that the sum of the numbers of vertices and edges is n.
1, 1, 1, 2, 3, 5, 9, 16, 29, 56, 110, 222, 465, 1003, 2226, 5101, 12010, 29062, 72200, 183886, 479544, 1279228, 3486584, 9699975, 27520936, 79563707, 234204235, 701458966, 2136296638, 6611816700, 20784932424, 66333327604, 214819211047, 705650404444, 2350231740975
Offset: 0
Keywords
Examples
For n = 4, the a(4) = 3 such multigraphs are the graph with four isolated vertices, the graph with three vertices and an edge between two of them, and the graph with two vertices connected by two edges.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- D. Einstein, M. Farber, E. Gunawan, M. Joseph, M. Macauley, J. Propp and S. Rubinstein-Salzedo, Noncrossing partitions, toggles, and homomesies, arXiv:1510.06362 [math.CO], 2015.
Programs
-
PARI
\\ Needs G from A191646. seq(n)={vector(n+1,i,1) + sum(k=1, n, concat(vector(n-k+1), G(n-k, k)))} \\ Andrew Howroyd, Feb 01 2020
Formula
a(n) = Sum_{k=0..n} A265580(k).
From Andrew Howroyd, Feb 01 2020: (Start)
a(n) = Sum_{i=1..n} A192517(i, n-i) for n > 0.
Euler transform of A265582. (End)
Extensions
Terms a(19) and beyond from Andrew Howroyd, Feb 01 2020
Comments