A265610 a(n) = rf(n, n+2)/(n+2)! - rf(n, n)/n!, rf the rising factorial A265609.
-1, 0, 2, 11, 49, 204, 825, 3289, 13013, 51272, 201552, 791350, 3105322, 12183560, 47805615, 187623765, 736618125, 2893125840, 11367801060, 44686512090, 175739405790, 691437981000, 2721606268290, 10717182330426, 42219554975874, 166386610183024, 655976895434000
Offset: 0
Keywords
Programs
-
Magma
[Binomial(2*n+1, n-1)-(0^n + Binomial(2*n, n))/2: n in [0..30]]; // Vincenzo Librandi, Dec 20 2015
-
Mathematica
Join[{-1}, Table[Binomial[2 n + 1, n - 1] - Binomial[2 n, n]/2, {n, 1, 36}]] (* Vincenzo Librandi, Dec 20 2015 *)
-
Sage
A265610 = lambda n: rising_factorial(n, n+2)/factorial(n+2) - rising_factorial(n, n)/factorial(n) print([A265610(n) for n in srange(27)])