cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265624 Array T(n,k): The number of words of length n in an alphabet of size k which do not contain 4 consecutive letters.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 0, 8, 9, 4, 0, 14, 27, 16, 5, 0, 26, 78, 64, 25, 6, 0, 48, 228, 252, 125, 36, 7, 0, 88, 666, 996, 620, 216, 49, 8, 0, 162, 1944, 3936, 3080, 1290, 343, 64, 9, 0, 298, 5676, 15552, 15300, 7710, 2394, 512, 81, 10, 0, 548, 16572, 61452
Offset: 1

Views

Author

R. J. Mathar, Dec 10 2015

Keywords

Examples

			  1    2      3      4      5       6       7        8
  1    4      9     16     25      36      49       64
  1    8     27     64    125     216     343      512
  0   14     78    252    620    1290    2394     4088
  0   26    228    996   3080    7710   16716    32648
  0   48    666   3936  15300   46080  116718   260736
  0   88   1944  15552  76000  275400  814968  2082304
  0  162   5676  61452 377520 1645950 5690412 16629816
		

Crossrefs

Cf. A135491 (column k=2), A181137 (k=3), A188714 (k=4), A265583 (not 2 consecutive letters), A265584 (not 3 consecutive letters).

Programs

  • Maple
    A265624 := proc(n,k)
            local x;
            k*x*(1+x+x^2)/(1+(1-k)*x*(x^2+x+1)) ;
            coeftayl(%,x=0,n) ;
    end proc;
    seq(seq(A265624(d-k,k),k=1..d-1),d=2..10) ;

Formula

T(2,k) = k^2.
T(3,k) = k^3.
T(4,k) = k*(k+1)*(k^2+3*k+3).
T(5,k) = k*(k+1)*(k^3+4*k^2+6*k+2).
T(6,k) = k*(k+1)^2*(k^3+4*k^2+6*k+1).
G.f. of row k: k*x*(1+x+x^2)/(1+(1-k)*x*(x^2+x+1)).