A265626 Let S be the set of factorizations of n! where the largest factor is the largest prime <= n, and let f(s) be the least factor in the factorization s. Then a(n) = max f(S).
2, 2, 2, 2, 3, 4, 3, 3, 4, 7, 6, 7, 7, 7, 7, 10, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 37, 37
Offset: 2
Keywords
Examples
2! = 2 3! = 2 * 3 4! = 2^3 * 3 5! = 2 * 3 * 4 * 5 6! = 3^2 * 4^2 * 5 7! = 4 * 5 * 6^2 * 7 8! = 3 * 4^3 * 5 * 6 * 7 9! = 3 * 4^2 * 5 * 6^3 * 7 10! = 4^2 * 5^2 * 6^4 * 7 11! = 7 * 8^2 * 9^2 * 10^2 * 11 12! = 6^5 * 7 * 8 * 10^2 * 11 13! = 7 * 8^2 * 9^2 * 10^2 * 11 * 12 * 13 14! = 7^2 * 8 * 9 * 10^2 * 11 * 12^3 * 13 15! = 7^2 * 9 * 10^3 * 11 * 12^4 * 13 16! = 7^2 * 10^3 * 11 * 12^6 * 13 17! = 10 * 11 * 12^4 * 13 * 14^2 * 15^2 * 16 * 17
Programs
-
PARI
f(n,mn,mx)=if(n%mn,return(0)); n/=mn; if(n==1, return(1)); for(k=mn,mx, if(f(n,k,mx), return(1))); 0 a(n)=if(n<6,return(2)); my(p=precprime(n),q=nextprime(p/2),N=n!); forprime(r=q+1,p-1, N/=r^valuation(N,r)); forstep(k=q,3,-1, if(f(N,k,p), return(k)))