cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265653 Integers k such that (k-1)^3 + 1 is a Fermat pseudoprime to base 2 (A001567).

Original entry on oeis.org

13, 37, 139, 271, 547, 4801, 7561, 12841, 14701, 358201, 678481, 16139971, 22934101, 55058581, 59553721, 74371321, 113068381, 116605861, 242699311, 997521211, 1592680321, 1652749201, 3190927741, 5088964801, 6974736757, 9214178821
Offset: 1

Views

Author

Altug Alkan, Dec 12 2015

Keywords

Comments

Corresponding Fermat pseudoprimes to base 2 are 1729, 46657, 2628073, 19683001, 162771337, 110592000001, 432081216001, ...
There is only one composite term up to 10^10: 14701. It also appears in A265628 (see comments). Can we say that if there is a Fermat pseudoprime to base 2 of the form (k-1)^3 + 1, k is a prime number most of the time? Are there other composite terms like 14701?

Examples

			13 is a term because (13-1)^3 + 1 = 1729, which is a Fermat pseudoprime to base 2.
37 is a term because (37-1)^3 + 1 = 46657, which is a Fermat pseudoprime to base 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], ! PrimeQ@ # && PowerMod[2, (# - 1), #] == 1 &@((# - 1)^3 + 1) &] (* Michael De Vlieger, Dec 12 2015, after Farideh Firoozbakht at A001567 *)
  • PARI
    is(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1};
    for(n=1, 1e10, if(is((n-1)^3+1), print1(n, ", ")));

Formula

a(n) = A270840(n) + 1.