cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265706 Rectangular array A read by upward antidiagonals: A(n,m) is the number of total difunctional (regular) binary relations between an n-element set and an m-element set.

Original entry on oeis.org

1, 3, 1, 7, 5, 1, 15, 19, 9, 1, 31, 65, 49, 17, 1, 63, 211, 225, 127, 33, 1, 127, 665, 961, 749, 337, 65, 1, 255, 2059, 3969, 3991, 2505, 919, 129, 1, 511, 6305, 16129, 20237, 16201, 8525, 2569, 257, 1, 1023, 19171, 65025, 100087, 97713, 65911
Offset: 1

Views

Author

Jasha Gurevich, Dec 14 2015

Keywords

Comments

A(n,m) is the number of total difunctional (regular) binary relations between an n-element set and an m-element set.

Examples

			Array A begins
1   3     7     15      31       63       127        255         511
1   5    19     65     211      665      2059       6305       19171
1   9    49    225     961     3969     16129      65025      261121
1  17   127    749    3991    20237    100087     489149     2379511
1  33   337   2505   16201    97713    568177    3242265    18341401
1  65   919   8525   65911   464645   3115519   20322605   130656871
1 129  2569  29625  271561  2214009  16911049  124422105   896158921
1 257  7327 105149 1137991 10657997  91989367  756570029  6046077511
1 513 21217 380745 4857001 52034913 504717697 4611314745 40608430681
		

Crossrefs

Cf. A265417.

Programs

  • Maple
    sum((Stirling2(m, i)*factorial(i)+Stirling2(m, i+1)*factorial(i+1))*Stirling2(n, i), i = 1 .. n);
  • Mathematica
    Table[Sum[(StirlingS2[m, i] i! + StirlingS2[m, i + 1] (i + 1)!) StirlingS2[n - m + 1, i], {i, n - m + 1}], {n, 10}, {m, n, 1, -1}] // Flatten (* Michael De Vlieger, Dec 14 2015 *)
  • PARI
    T(n, m) = sum(i=1, n, ( stirling(m, i, 2)*i! + stirling(m, i+1, 2)*(i+1)!)*stirling(n, i, 2));

Formula

T(n, m) = Sum_{i=1..n} (Stirling2(m, i)* i! + Stirling2(m, i+1)*(i+1)!) *Stirling2(n, i).