A265714 a(n) = the smallest number k such that floor(Sum_{d|k} 1/sigma(d)) = n.
1, 60, 110880, 4658179125600, 950542574818669103079134726400, 204614292026733833316841991529248485168966921782532186656980932752000
Offset: 1
Keywords
Examples
For n = 2; a(2) = 60 because 60 is the smallest number with floor (Sum_{d|60} 1/sigma(d)) = floor(155/72) = 2.
Crossrefs
Programs
-
Magma
a:=1; S:=[a]; for n in [2..3] do k:=0; flag:= true; while flag do k+:=1; if &+[1/SumOfDivisors(d): d in Divisors(k)] ge n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
Extensions
a(4)-a(6) from Hiroaki Yamanouchi, Dec 31 2015
Comments