cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265721 Decimal representation of the n-th iteration of the "Rule 1" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 0, 4, 99, 16, 1935, 64, 32319, 256, 522495, 1024, 8381439, 4096, 134189055, 16384, 2147368959, 65536, 34359279615, 262144, 549753978879, 1048576, 8796085682175, 4194304, 140737458995199, 16777216, 2251799696244735, 67108864, 36028796549201919, 268435456
Offset: 0

Views

Author

Robert Price, Dec 14 2015

Keywords

Comments

Rule 33 also generates this sequence.

Examples

			From _Michael De Vlieger_, Dec 14 2015: (Start)
First 8 rows, replacing leading zeros with ".", the row converted to its binary (A265720), then decimal equivalent at right:
              1                ->               1  =     1
            . . 0              ->               0  =     0
          . . 1 0 0            ->             100  =     4
        1 1 0 0 0 1 1          ->         1100011  =    99
      . . . . 1 0 0 0 0        ->           10000  =    16
    1 1 1 1 0 0 0 1 1 1 1      ->     11110001111  =  1935
  . . . . . . 1 0 0 0 0 0 0    ->         1000000  =    64
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1  -> 111111000111111  = 32319
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule = 1; rows = 30; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]],2], {k,1,rows}]
  • Python
    print([2*4**n  - 7*2**(n-1) - 1 if n%2 else 2**n for n in range(50)]) # Karl V. Keller, Jr., Aug 24 2021

Formula

From Colin Barker, Dec 14 2015 and Apr 16 2019: (Start)
a(n) = 21*a(n-2) - 84*a(n-4) + 64*a(n-6) for n>5.
G.f.: (1-17*x^2+99*x^3+16*x^4-144*x^5) / ((1-x)*(1+x)*(1-2*x)*(1+2*x)*(1-4*x)*(1+4*x)).
(End)
a(n) = 2*4^n - 7*2^(n-1) - 1 for odd n; a(n) = 2^n for even n. - Karl V. Keller, Jr., Aug 24 2021