A265731 Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, without multiplicity.
8, 9, 16, 25, 32, 36, 64, 81, 100, 125, 128, 144, 169, 196, 225, 243, 256, 289, 324, 343, 400, 441, 512, 576, 625, 676, 784, 841, 900, 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1521, 1600, 1681, 1728, 1764, 1849, 2025, 2048, 2197, 2304, 2500, 2601, 2704, 2744, 2809, 2916, 3025, 3125
Offset: 1
Examples
8 = 2^3 = 2^2 + 2^2; 9 = 3^2 = 1^3 + 2^3; 16 = 4^2 = 2^3 + 2^3; etc.
Links
- Anatoly E. Voevudko, Table of n, a(n) for n = 1..7253
- Anatoly E. Voevudko, Description of all powers in b265731
- Anatoly E. Voevudko, Description of all powers in b245713
- Anatoly E. Voevudko, Description of all powers in b261782
- Wikipedia, abc conjecture
- Wikipedia, Fermat-Catalan conjecture
Programs
-
PARI
A265731(lim,bflag=0)={my(Lcz=List(1),Lb=List(),czn,lczn,lbn,lim2=logint(lim, 2),lim3); for(z=2, lim2, lim3=sqrtnint(lim, z); for(C=2, lim3, listput(Lcz, C^z))); Lcz=Set(Lcz); lczn = #Lcz; if(lczn==0,return(-1)); for(i=1, lczn, for(j=i, lczn, czn=Lcz[i]+Lcz[j]; if(czn>lim, break); if(setsearch(Lcz, czn), listput(Lb, czn)))); listsort(Lb,1); lbn=#Lb; if(bflag, for(i=1,lbn,print(i , " ", Lb[i]))); if(!bflag,return(Vec(Lb))); } \\ Anatoly E. Voevudko, Nov 23 2015
Comments