A281555 Consider any concatenation of the type n = concat(a,b). Sequence lists numbers whose reverses are the sum of the products of some of such couples a and b.
351, 621, 886, 1641, 1901, 2401, 4122, 4322, 5101, 6568, 23913, 30591, 46649, 60291, 90877, 199001, 216322, 223471, 237391, 297498, 394391, 405278, 420552, 425322, 430762, 456478, 470149, 546649, 861226, 910001, 920781, 1740821, 2008541, 2329876, 2348812, 2414722
Offset: 1
Examples
3*51 = 153; 6*21 = 126; 8*86 = 688; 1*641 + 16*41 + 164*1 = 1461; 1*901 + 190*1 = 1091.
Programs
-
Maple
with(combinat): with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local a, j, k,n; for n from 1 to q do a:={}; for k from 1 to ilog10(n) do a:=a union {(n mod 10^k)*trunc(n/10^k)}; od; a:=choose(a); for k from 2 to nops(a) do if T(n)=add(a[k][j], j=1..nops(a[k])) then print(n); break; fi; od; od; end: P(10^9);
-
Mathematica
Select[Range[10^5], Function[w, MemberQ[Total /@ Rest@ Subsets@ Map[Times @@ Map[FromDigits@ # &, TakeDrop[w, #]] &, Range[Length@ w - 1]], FromDigits@ Reverse@ w]]@ IntegerDigits@ # &] (* Michael De Vlieger, Jan 24 2017, Version 10.3 *)
Comments