A265739 Numbers k such that there exists at least one integer in the interval [Pi*k - 1/k, Pi*k + 1/k].
1, 2, 6, 7, 14, 21, 28, 106, 113, 226, 339, 452, 565, 678, 791, 904, 1017, 1130, 1243, 1356, 1469, 1582, 1695, 1808, 1921, 33102, 33215, 66317, 99532, 165849, 265381, 364913, 729826, 1360120, 1725033, 3450066, 5175099, 25510582, 27235615
Offset: 1
Keywords
Examples
For k=1, there exist two integers, 3 and 4, in the interval [1*Pi - 1/1, 1*Pi + 1/1] = [2.14159..., 4.14159...]; for k=2, the number 6 is in the interval [2*Pi - 1/2, 2*Pi + 1/2] = [5.783185..., 6.783185...]. for k=6, the number 19 is in the interval [6*Pi - 1/6, 6*Pi + 1/6] = [18.682889..., 19.016223...].
Links
- Takao Komatsu, The interval associated with a Fibonacci number, The Fibonacci Quarterly, Volume 41, Number 1, February 2003.
- Eric Weisstein's World of Mathematics, Pi Continued Fraction
Programs
-
Maple
# program gives the interval [a,b], the first integer in [a,b] and n nn:=10^9: for n from 1 to nn do: x1:=evalhf(Pi*n-1/n):y1:=evalhf(Pi*n+1/n): x:=floor(x1):y:=floor(y1): for j from x+1 to y do: printf("%g %g %d %d\n",x1,y1,j,n): od: od:
Comments