A265761 Numerators of primes-only best approximates (POBAs) to 3/2; see Comments.
2, 5, 7, 11, 17, 19, 29, 43, 47, 61, 71, 79, 89, 101, 107, 109, 151, 163, 191, 197, 223, 227, 251, 269, 271, 317, 349, 359, 421, 439, 461, 467, 521, 523, 569, 601, 613, 631, 647, 659, 673, 691, 701, 719, 811, 821, 853, 857, 881, 911, 919, 929, 947, 971, 991
Offset: 1
Examples
The POBAs for 3/2 start with 2/2, 5/3, 7/5, 11/7, 17/11, 19/13, 29/19, 43/29, 47/31. For example, if p and q are primes and q > 13, then 19/13 is closer to 3/2 than p/q is.
Programs
-
Mathematica
x = 3/2; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265761/A222565 *) Numerator[tL] (* A104163 *) Denominator[tL] (* A158708 *) Numerator[tU] (* A162336 *) Denominator[tU] (* A158709 *) Numerator[y] (* A265761 *) Denominator[y] (* A222565 *)
Comments