cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A275415 Pairs of primes (p, q) such that |2p - 3q| = 1.

Original entry on oeis.org

5, 3, 7, 5, 11, 7, 17, 11, 19, 13, 29, 19, 43, 29, 47, 31, 61, 41, 71, 47, 79, 53, 89, 59, 101, 67, 107, 71, 109, 73, 151, 101, 163, 109, 191, 127, 197, 131, 223, 149, 227, 151, 251, 167, 269, 179, 271, 181, 317, 211, 349, 233, 359, 239, 421, 281, 439, 293
Offset: 1

Views

Author

Michel Lagneau, Aug 09 2016

Keywords

Comments

We observe that a(2n-1) = A265761(n+1) and a(2n) = A222565(n+1).

Examples

			The first pair (5, 3) is in the sequence because |2*5 - 3*3| = 1;
The second pair (7, 5) is in the sequence because |2*7 - 3*5|= 1.
		

Crossrefs

Programs

  • Maple
    nn:=100:for i from 3 to nn do:
    p:=ithprime(i):r:=irem(p,3):q:=(2*p + (-1)^(r+1))/3:
      if isprime(q)
       then
      printf(`%d, `,p): printf(`%d, `,q):
      else
      fi:
    od:
  • PARI
    lista(n)=forprime(i=3,n,j=(1.5*i)\1;j+=((j+1)%2);if(isprime(j),print1(j", "i", "))) \\ David A. Corneth, Aug 09 2016
Showing 1-2 of 2 results.