A265782
Numerators of primes-only best approximates (POBAs) to sqrt(3); see Comments.
Original entry on oeis.org
5, 3, 5, 19, 71, 601, 1571, 2579, 3691, 56813, 111913
Offset: 1
The POBAs to sqrt(3) start with 5/2, 3/2, 5/3, 19/11, 71/41, 601/347, 1571/907. For example, if p and q are primes and q > 347, then 601/347 is closer to sqrt(3) than p/q is.
-
x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
Numerator[tL] (* A265778 *)
Denominator[tL] (* A265779 *)
Numerator[tU] (* A265780 *)
Denominator[tU] (* A265781 *)
Numerator[y] (* A265782 *)
Denominator[y] (* A265783 *)
A265783
Denominators of primes-only best approximates (POBAs) to sqrt(3); see Comments.
Original entry on oeis.org
2, 2, 3, 11, 41, 347, 907, 1489, 2131, 32801, 64613
Offset: 1
The POBAs to sqrt(3) start with 5/2, 3/2, 5/3, 19/11, 71/41, 601/347, 1571/907. For example, if p and q are primes and q > 347, then 601/347 is closer to sqrt(3) than p/q is.
-
x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
Numerator[tL] (* A265778 *)
Denominator[tL] (* A265779 *)
Numerator[tU] (* A265780 *)
Denominator[tU] (* A265781 *)
Numerator[y] (* A265782 *)
Denominator[y] (* A265783 *)
A265801
Denominators of primes-only best approximates (POBAs) to the golden ratio, tau; see Comments.
Original entry on oeis.org
2, 2, 3, 7, 19, 23, 29, 97, 353, 563, 631, 919, 1453, 2207, 15271, 15737, 42797, 49939
Offset: 1
The POBAs to tau start with 5/2, 3/2, 5/3, 11/7, 31/19, 37/23, 47/29, 157/97, 571/353, 911/563. For example, if p and q are primes and q > 29, then 47/29 is closer to tau than p/q is.
-
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *)
Numerator[tL] (* A265796 *)
Denominator[tL] (* A265797 *)
Numerator[tU] (* A265798 *)
Denominator[tU] (* A265799 *)
Numerator[y] (* A265800 *)
Denominator[y] (* A265801 *)
A265796
Numerators of lower primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments.
Original entry on oeis.org
3, 11, 37, 163, 173, 241, 571, 1231, 1571, 2351, 3571, 25463, 69247
Offset: 1
The lower POBAs to tau start with 3/2, 11/7, 37/23, 163/101, 173/107, 241/149. For example, if p and q are primes and q > 101, and p/q < tau, then 163/101 is closer to tau than p/q is.
-
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *)
Numerator[tL] (* A265796 *)
Denominator[tL] (* A265797 *)
Numerator[tU] (* A265798 *)
Denominator[tU] (* A265799 *)
Numerator[y] (* A265800 *)
Denominator[y] (* A265801 *)
A265797
Denominator of lower primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments.
Original entry on oeis.org
2, 7, 23, 101, 107, 149, 353, 761, 971, 1453, 2207, 15737, 42797
Offset: 1
The lower POBAs to tau start with 3/2, 11/7, 37/23, 163/101, 173/107, 241/149. For example, if p and q are primes and q > 101, and p/q < tau, then 163/101 is closer to tau than p/q is.
-
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (*lower POBA*)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (*upper POBA*)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (*POBA,A265800/A265801*)
Numerator[tL] (*A265796*)
Denominator[tL] (*A265797*)
Numerator[tU] (*A265798*)
Denominator[tU] (*A265799*)
Numerator[y] (*A265800*)
Denominator[y] (*A265801*)
A265798
Numerators of upper primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments.
Original entry on oeis.org
5, 5, 31, 47, 157, 911, 1021, 1487, 4283, 5147, 8629, 11069, 15017, 20939, 22447, 24709, 38239, 80803
Offset: 1
The upper POBAs to tau start with 5/2, 5/3, 31/19, 47/29, 157/97, 911/563, 1021/631. For example, if p and q are primes and q > 97, and p/q > tau, then 157/97 is closer to tau than p/q is.
-
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *)
Numerator[tL] (* A265796 *)
Denominator[tL] (* A265797 *)
Numerator[tU] (* A265798 *)
Denominator[tU] (* A265799 *)
Numerator[y] (* A265800 *)
Denominator[y] (* A265801 *)
A265799
Denominators of upper primes-only best approximates (POBAs) to the golden ratio, tau (A001622); see Comments.
Original entry on oeis.org
2, 3, 19, 29, 97, 563, 631, 919, 2647, 3181, 5333, 6841, 9281, 12941, 13873, 15271, 23633, 49939
Offset: 1
The upper POBAs to tau start with 5/2, 5/3, 31/19, 47/29, 157/97, 911/563, 1021/631. For example, if p and q are primes and q > 97, and p/q > tau, then 157/97 is closer to tau than p/q is.
-
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *)
Numerator[tL] (* A265796 *)
Denominator[tL] (* A265797 *)
Numerator[tU] (* A265798 *)
Denominator[tU] (* A265799 *)
Numerator[y] (* A265800 *)
Denominator[y] (* A265801 *)
A265772
Numerators of lower primes-only best approximates (POBAs) to sqrt(2); see Comments.
Original entry on oeis.org
2, 7, 41, 977, 1093, 1373, 1721, 2281, 3121, 3319, 3947, 4903, 4937, 8597, 38287, 64037, 78643
Offset: 1
The lower POBAs to sqrt(2) start with 2/2, 7/5, 41/29, 977/691, 1093/773, 1373/971. For example, if p and q are primes and q > 691, and p/q < sqrt(2), then 977/691 is closer to sqrt(2) than p/q is.
-
x = Sqrt[2]; z = 200; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265776/A265777 *)
Numerator[tL] (* A265772 *)
Denominator[tL] (* A265773 *)
Numerator[tU] (* A265774 *)
Denominator[tU] (* A265775 *)
Numerator[y] (* A265776 *)
Denominator[y] (* A265777 *)
A265774
Numerators of upper primes-only best approximates (POBAs) to sqrt(2); see Comments.
Original entry on oeis.org
3, 19, 53, 61, 197, 211, 443, 491, 839, 1051, 1249, 1427, 3701, 17351, 22247, 53569, 61927, 128033
Offset: 1
The upper POBAs to sqrt(2) start with 3/2, 19/13, 53/37, 61/43, 197/139, 211/149. For example, if p and q are primes and q > 139, and p/q > sqrt(2), then 197/139 is closer to sqrt(2) than p/q is.
-
x = Sqrt[2]; z = 200; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265776/A265777 *)
Numerator[tL] (* A265772 *)
Denominator[tL] (* A265773 *)
Numerator[tU] (* A265774 *)
Denominator[tU] (* A265775 *)
Numerator[y] (* A265776 *)
Denominator[y] (* A265777 *)
A265800
Numerators of primes-only best approximates (POBAs) to the golden ratio, tau; see Comments.
Original entry on oeis.org
5, 3, 5, 11, 31, 37, 47, 157, 571, 911, 1021, 1487, 2351, 3571, 24709, 25463, 69247, 80803
Offset: 1
The POBAs to tau start with 5/2, 3/2, 5/3, 11/7, 31/19, 37/23, 47/29, 157/97, 571/353, 911/563. For example, if p and q are primes and q > 29, then 47/29 is closer to tau than p/q is.
-
x = GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265800/A265801 *)
Numerator[tL] (* A265796 *)
Denominator[tL] (* A265797 *)
Numerator[tU] (* A265798 *)
Denominator[tU] (* A265799 *)
Numerator[y] (* A265800 *)
Denominator[y] (* A265801 *)
Showing 1-10 of 55 results.
Comments