cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A265783 Denominators of primes-only best approximates (POBAs) to sqrt(3); see Comments.

Original entry on oeis.org

2, 2, 3, 11, 41, 347, 907, 1489, 2131, 32801, 64613
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs to sqrt(3) start with 5/2, 3/2, 5/3, 19/11, 71/41, 601/347, 1571/907. For example, if p and q are primes and q > 347, then 601/347 is closer to sqrt(3) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265778 *)
    Denominator[tL] (* A265779 *)
    Numerator[tU]   (* A265780 *)
    Denominator[tU] (* A265781 *)
    Numerator[y]    (* A265782 *)
    Denominator[y]  (* A265783 *)

Extensions

a(10)-a(11) from Robert Price, Apr 05 2019

A265778 Numerators of lower primes-only best approximates (POBAs) to sqrt(3); see Comments.

Original entry on oeis.org

3, 5, 19, 71, 601, 1997, 2579, 3691, 75533, 167543, 175649
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The lower POBAs to sqrt(3) start with 3/2, 5/3, 19/11, 71/41, 601/347. For example, if p and q are primes and q > 347, and p/q < sqrt(3), then 601/347 is closer to sqrt(3) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265778 *)
    Denominator[tL] (* A265779 *)
    Numerator[tU]   (* A265780 *)
    Denominator[tU] (* A265781 *)
    Numerator[y]    (* A262582 *)
    Denominator[y]  (* A265783 *)

Extensions

a(9)-a(11) from Robert Price, Apr 05 2019

A265779 Denominators of lower primes-only best approximates (POBAs) to sqrt(3); see Comments.

Original entry on oeis.org

2, 3, 11, 41, 347, 1153, 1489, 2131, 43609, 96731, 101411
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The lower POBAs to sqrt(3) start with 3/2, 5/3, 19/11, 71/41, 601/347. For example, if p and q are primes and q > 347, and p/q < sqrt(3), then 601/347 is closer to sqrt(3) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265778 *)
    Denominator[tL] (* A265779 *)
    Numerator[tU]   (* A265780 *)
    Denominator[tU] (* A265781 *)
    Numerator[y]    (* A262582 *)
    Denominator[y]  (* A265783 *)

Extensions

a(9)-a(11) from Robert Price, Apr 05 2019

A265780 Numerators of upper primes-only best approximates (POBAs) to sqrt(3); see Comments.

Original entry on oeis.org

5, 7, 11, 13, 23, 83, 103, 127, 137, 227, 809, 1093, 1571, 4273, 5333, 16141, 20627, 41519, 56813, 111913
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.
Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Crossrefs

Programs

  • Mathematica
    x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265778 *)
    Denominator[tL] (* A265779 *)
    Numerator[tU]   (* A265780 *)
    Denominator[tU] (* A265781 *)
    Numerator[y]    (* A262582 *)
    Denominator[y]  (* A265783 *)

Formula

The upper POBAs to sqrt(3) start with 5/2, 7/3, 11/5, 13/7, 23/13, 83/47, 103/59. For example, if p and q are primes and q > 47, and p/q > sqrt(3), then 83/47 is closer to sqrt(3) than p/q is.

Extensions

a(16)-a(20) from Robert Price, Apr 05 2019

A265781 Denominators of upper primes-only best approximates (POBAs) to sqrt(3); see Comments.

Original entry on oeis.org

2, 3, 5, 7, 13, 47, 59, 73, 79, 131, 467, 631, 907, 2467, 3079, 9319, 11909, 23971, 32801, 64613
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.
Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The upper POBAs to sqrt(3) start with 5/2, 7/3, 11/5, 13/7, 23/13, 83/47, 103/59. For example, if p and q are primes and q > 47, and p/q > sqrt(3), then 83/47 is closer to sqrt(3) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265778 *)
    Denominator[tL] (* A265779 *)
    Numerator[tU]   (* A265780 *)
    Denominator[tU] (* A265781 *)
    Numerator[y]    (* A265782 *)
    Denominator[y]  (* A265783 *)

Extensions

a(16)-a(20) from Robert Price, Apr 05 2019

A265784 Numerators of lower primes-only best approximates (POBAs) to sqrt(5); see Comments.

Original entry on oeis.org

3, 5, 11, 29, 163, 199, 521, 3571, 91283, 150427
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The lower POBAs to sqrt(5) start with 3/2, 5/3, 11/5, 29/13, 163/73, 199/89, 521/233. For example, if p and q are primes and q > 73, and p/q < sqrt(5), then 163/73 is closer to sqrt(5) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[5]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265784 *)
    Denominator[tL] (* A265785 *)
    Numerator[tU]   (* A265786 *)
    Denominator[tU] (* A265787 *)
    Numerator[y]    (* A222588 *)
    Denominator[y]  (* A265789 *)

Extensions

a(9)-a(10) from Robert Price, Apr 05 2019

A265785 Denominators of lower primes-only best approximates (POBAs) to sqrt(5); see Comments.

Original entry on oeis.org

2, 3, 5, 13, 73, 89, 233, 1597, 40823, 67273
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The lower POBAs to sqrt(5) start with 3/2, 5/3, 11/5, 29/13, 163/73, 199/89, 521/233. For example, if p and q are primes and q > 73, and p/q < sqrt(5), then 163/73 is closer to sqrt(5) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[5]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265784 *)
    Denominator[tL] (* A265785 *)
    Numerator[tU]   (* A265786 *)
    Denominator[tU] (* A265787 *)
    Numerator[y]    (* A222588 *)
    Denominator[y]  (* A265789 *)

Extensions

a(9)-a(10) from Robert Price, Apr 05 2019

A265786 Numerators of upper primes-only best approximates (POBAs) to sqrt(5); see Comments.

Original entry on oeis.org

5, 7, 43, 83, 293, 709, 937, 1259, 2131, 6791, 8951, 12721, 26683, 111667, 154841
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.
Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The upper POBAs to sqrt(5) start with 5/2, 7/3, 43/19, 83/37, 293/131, 709/317, 937/419. For example, if p and q are primes and q > 131, and p/q > sqrt(5), then 293/131 is closer to sqrt(5) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[5]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265784 *)
    Denominator[tL] (* A265785 *)
    Numerator[tU]   (* A265786 *)
    Denominator[tU] (* A265787 *)
    Numerator[y]    (* A222588 *)
    Denominator[y]  (* A265789 *)

Extensions

a(13)-a(15) from Robert Price, Apr 05 2019

A265787 Denominators of upper primes-only best approximates (POBAs) to sqrt(5); see Comments.

Original entry on oeis.org

2, 3, 19, 37, 131, 317, 419, 563, 953, 3037, 4003, 5689, 11933, 49939, 69247
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.
Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The upper POBAs to sqrt(5) start with 5/2, 7/3, 43/19, 83/37, 293/131, 709/317, 937/419. For example, if p and q are primes and q > 131, and p/q > sqrt(5), then 293/131 is closer to sqrt(5) than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[5]; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)
    Numerator[tL]   (* A265784 *)
    Denominator[tL] (* A265785 *)
    Numerator[tU]   (* A265786 *)
    Denominator[tU] (* A265787 *)
    Numerator[y]    (* A265788 *)
    Denominator[y]  (* A265789 *)

Extensions

a(13)-a(15) from Robert Price, Apr 05 2019
Showing 1-10 of 13 results. Next